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Abstract

We explore the task of Reasoning Across Images and
Video (RAIV), which requires models to reason on a pair
of visual inputs comprising various combinations of im-
ages and/or videos. Previous work in this area has been
limited to image pairs focusing primarily on the existence
and/or cardinality of objects. To address this, we leverage
existing datasets with rich annotations to generate seman-
tically meaningful queries about actions, objects, and their
relationships. We introduce new datasets that encompass
visually similar inputs, reasoning over images, across im-
ages and videos, or across videos. Recognizing the distinct
nature of RAIV compared to existing pre-training objec-
tives which work on single image-text pairs, we explore
task-specific pre-training, wherein a pre-trained model is
trained on an objective similar to downstream tasks with-
out utilizing fine-tuning datasets. Experiments with several
state-of-the-art pre-trained image-language models reveal
that task-specific pre-training significantly enhances per-
formance on downstream datasets, even in the absence of
additional pre-training data. We provide further ablative
studies to guide future work. Our code and datasets will be
made public.

1. Introduction

Vision-Language tasks, i.e., tasks that require under-
standing and reasoning over vision and text, have gained
widespread popularity in recent years. This increase can
be primarily attributed to the user-friendly nature of these
tasks, which allow for natural language communication with
minimal guidance for the end-user. Popular downstream
Vision-Language tasks and benchmarks include Image Clas-
sification [8], Visual Question Answering (VQA) [1, 12],
Image-Text Retrieval and Captioning [5]. However, such
tasks focus on reasoning over a single image or video. In this
work, we aim to broaden the scope and investigate down-
stream tasks which additionally require reasoning over a set
of images and/or videos.

The common approach to train models on Vision-
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Language tasks is to utilize Vision-and-Language Pre-
training (VLP), then fine-tune the model on the downstream
task. First, the model is trained on large amounts of, po-
tentially noisy, paired vision and language corpora obtained
directly from the web. The pre-trained model is then fine-
tuned over a range of unimodal or multi-modal downstream
tasks with a separate head added for each task. During the
pre-training stage, models are trained over synthetic tasks
generated from the paired text data with the most commonly
used tasks being masked language modeling, image-text
matching, and contrastive learning. These pre-training tasks
have several advantages, including the ability to be directly
applied to any paired image-text corpus, ease of training,
and empirical evidence of large improvements when fine-
tuned on downstream tasks such as VQA and image-text
retrieval [11,15,21]. However, the downstream tasks used as
benchmarks are often close to the original pre-training tasks
usually reasoning over a single image and text.

In this work, we investigate downstream tasks which
additionally require reasoning over a set of images and/or
videos. The closest work in this space is NLVR2 [42] where
given a pair of images and a corresponding statement, the
model is required to classify the statement as True or False.
NLVR2 has been used as a diagnostic dataset for a number
of vision-language pre-training methods [6, | |]. However,
NLVR?2 suffers from three key deficiencies: First, the dataset
is strictly limited to a pair of images and doesn’t include
videos; Second, it is not possible to diagnose why the model
classified a statement as True or False as there is no reasoning
component; Third, the statements are overwhelmingly about
either the existence or the cardinality of objects.

We extend the NLVR2 task [42] to include both images
and video. For brevity, we denote this task as Reasoning
Across Images and Video (RAIV). We leverage annotations
from existing datasets with semantically rich annotations,
namely ImSitu [47] and VidSitu [36] which provide fine-
grained information about the activity, and the entities in-
volved in the activity. This allows us to create new datasets
that have statements about image-image (Im-Im), image-
video (Im-Vid), and video-video (Vid-Vid). These rich
datasets allow the creation of statements about actions, ob-



How many dolphins are
present in the image?

Two dolphins jumping out
of water during sunsets

(a) VLP with MLM + [TM

Both Images show dolphins jumping out of water.
A: True

(c) Im-Im VVT task

Both image and the video show dolphins jumping out of water.
A: False
R: Only left image has dolphin jumping out of water.

(d) Im-Vid VVT task

Both videos show dolphins jumping out of water.
A: False
R: Neither video shows dolphins jumping out of water.

(e) Vid-Vid VVT task

Figure 1. Existing fine-tuning tasks such as (b) VQA operate on
single image which is similar to pre-training objective (a) such
as Masked-Language Modeling or Image-Text Matching. Here,
we expand the scope to include reasoning (c) across images or (d)
across image and a video. (e) across videos. Here “A” denotes the
answer (True/False), and “R” denotes reason.

jects, and other semantic roles. Further, since our statement
queries are generated in an automatic fashion and we have
access to the ground-truth annotations, we also explore the
task of reasoning, i.e., why the model chose a specific answer

(true or false), using a multiple-choice answer framework.
Finally, for rich image-image comparison, we also utilize
Instruct-Pix2Pix [3] where the image pair consists of the
original image and an edited image obtained via a generative
model (Stable-Diffusion [32]). Figure 1 illustrates this with
an example.

Though the obtained queries are rich and diverse in se-
mantic content, the queries themselves follow a fixed tem-
plate structure that doesn’t capture human-like natural lan-
guage. To fix this issue, we utilize the progress in large-
language models [26,44] and provide the reference captions
obtained from the source annotations to generate queries.

We note that RAIV involves more than one image and
video input which is different from the conventional vision-
language pre-training setup. To bridge this gap, we intro-
duce a second pre-training step which is task-specific before
fine-tuning on the target downstream dataset. For this task-
specific pre-training, we leverage the same dataset employed
in the initial pre-training, and don’t require access to the
downstream dataset. We exploit object detectors as well
as provided image and video captions to obtain semantic
roles to create synthetic pairs for RAIV task. Specifically,
we initialize the weights from a pre-trained vision-language
model. The model is then trained for the downstream tasks
but is confined to the original pre-training datasets.

Our experiments show that while pre-training is
quintessential to obtaining state-of-art results, task-specific
pre-training leads to significant gains (over 1-3%). The dif-
ferences are further exacerbated in image-video and video-
video tasks. We also find task-specific pre-training can
achieve competitive performance even with significantly
smaller amount of downstream dataset.

Our main contributions can be summarized as (i) intro-
ducing Reasoning Across Images and Video (RAIV) task
with multiple datasets ranging from Im-Im, Im-Vid and Vid-
Vid (ii) task-specific pre-training for RAIV and (iii) detailed
ablative study and benchmark with multiple baselines.

2. Related Works

Vision-Language Pre-Training (VLP) has effectively
become the standard for almost every vision-language task.
Earlier works replicated the success of language pre-training
in GPT [30], BERT [9] to the image-language domain using
pre-extracted object features such as LXMERT [43], ViL-
BERT [25], VL-BERT [41], UNITER [6]. Recent works ex-
tend the vision-transformer (ViT) architectures [ 10] to vision-
language transformers such as ViLT [15], ALBEF [21], ME-
TER [ 1] and learn directly from patches from raw images.
Such models can be initialized from strong vision backbones
trained via contrastive losses over a very large image-text
corpus such CLIP [29] and ALIGN [13].

Here, our aim is not to design a new architecture, but
instead to validate the generalization of existing pre-training



Arg0 Person Arg0 Person Arg0

Argl Bread Argl Bread Argl

Arg2 Knife Arg2 Hand Arg2

Loc  Chopping Board Loc  Kitchen Loc
Image-1 Image-2

Common Object <c-obj>: Bread
True Templates:

In both images, <c-obj> is present.

False Template:
<c-obj> is present only in the left image.

(1&2)
In both images, bread is present. (True)

D) In only left image bread is present. (False)
Bread

(2 &3)
Hand In both images, a person is eating bread.
Restaurant (L) . . .

In both images, a person is eating in a
Image-3 restaurant. (False)

Figure 2. Sentence generation for RAIV tasks. Given images from ImSitu (same process applies for videos from VidSitu) along with their
SRLs, we find the common object (in this case bread) and use them along with True/False templates to generate sentences.

losses to downstream tasks which differ considerably from
the pre-training tasks in their input format. For our experi-
ments we use METER [1 1] as our base model, but also show
comparisons with ALBEF [21], VinVL [49], FROZEN [2].

Fine-Tuning for most common image-language tasks
such as VQA, image-text retrieval, and image-captioning
involves adding a task-specific head and training it over the
target dataset. As noted before, downstream tasks often vary
based on input type such as in NLVR?2 which requires two
images instead of one. To accommodate this, previous work
[6,7,11,43] create new image token type embedding. Such
heuristic has largely been successful in improving results
over non-pre-trained models. Different from previous work
which performs additional training on the target domain, our
focus is to perform training on original pre-training datasets
with additional synthetic tasks. Here, we re-use the same
idea of new image-type embedding but don’t differentiate
between images and videos, essentially treating images as
single-frame videos.

Visual Semantic Role Labeling (SRLs) for Reasoning
has been previously explored under human-object interac-
tion [4], situation recognition [14,28,36,47]. In this work,
we utilize SRL annotations from existing datasets, partic-
ularly ImSitu [47] and VidSitu [36] to semi-automatically
create new downstream datasets to include reasoning over set
of images and videos. Using SRL annotations for construct-
ing datasets has also been used for video grounding [34]
and video question answering [35]. We further use existing
SRL system [39] to obtain SRLs in pre-training datasets and
utilize them in creating synthetic tasks for pre-training.

3. Method

We first describe Reasoning Across Images and Video
(RAIV) tasks in detail (Section 3.1) followed by our model
framework (Section 3.2).

3.1. Reasoning Across Images and Video (RAIV)
Tasks

Given a pair of visual inputs such as pair of images, an
image and a video, or a pair of videos along with a corre-
sponding statement about the pair, the model has to correctly
classify the statement as true or false. We call this task Rea-
soning Across Images and Video (RAIV). This extends the
well-known NLVR?2 task [42] to include both images and
videos instead of just images.

Though conceptually simple, creating new datasets re-
quires considerable human resources and can still fall vic-
tim to dataset biases. For instance, the cost of obtaining a
unique sentence in NLVR2 was $0.65. Further, extending
the NLVR2 annotation approach for videos is prohibitively
expensive due to a significant increase in annotation time.
To circumvent this issue, we instead choose to create new
datasets semi-automatically from existing datasets with se-
mantically rich annotations. In creating datasets for RAIV,
we have three main considerations: (i) the statement queries
should include rich object and activity semantic informa-
tion (ii) the visual inputs should be similar for finding fine-
grained differences (iii) the dataset should support a reason-
ing component to identify why a statement is classified as
true or false. Unfortunately, no single dataset satisfies the
above three criteria. Thus, we create individual datasets to
test these components.
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Figure 3. A schematic of framework for RAIV task. Input is a pair of images, videos or an image and a video (shown here) with a text. The
visual inputs (denoted by 11 and 12) are first patchified then appended with temporal position embedding denoting the frame number. We
note that images are considered to be a single frame video. Then, we add the ID embedding denoting whether it is the first or the second
visual input. This is input into two METER model (shared weights) which takes both vision patches and text as input. The appended CLS
from both inputs are concatenated and a Binary Cross Entropy Loss is used given the ground-truth.

Rich Visual Semantics. To obtain rich semantic data,
we utilize semantic role labeling (SRL) which answers the
high-level question of “who did what to whom” [40]. To
obtain SRLs we can either apply an existing semantic role
labeling system [39] or utilize annotations in existing Visual
Semantic Role datasets [36,47]. For the purpose of creating
rich downstream datasets, we opt for the latter with human-
annotated SRLs. We also utilize an object detector to obtain
the unique objects within a given image or video.

Recall that our task is to obtain pair of images or videos
and a corresponding statement to be classified as true or
false. To this end, we design a template-based statement
generation method with the templates closely following ex-
emplar statements in NLVR2 dataset. While template-based
statements are significantly less rich and diverse compared
to human-annotated systems, there are two key advantages.

First, it is inexpensive and directly allows us to create bal-
anced training, validation, and test sets. Second, we are able
to generate reasoning for the classification of the statement.
Since the reasoning for classifying a statement is often a
tautology, we instead opt for reasoning classification only
for the False statements.

The chosen templates test for existence, similarity, or
differences about the “object”, “action” and “action+entity
or other semantic roles between the two visual inputs. The
former is obtained from an object detector and the latter
from SRLs. To generate a statement, we first condition
whether the statement would be “True” or “False” and choose
a template, for instance “obj-X is present in both images”.
Based on the condition and the template we then sample two
images with at least one common object and convert it into

a statement. In practice, we remove very common objects
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such as “sky”, and “person” expected to appear in a large
number of images. Figure 2 illustrates the use of templates
with an example.

Similar Visual Inputs. Instances of visual input pairs
based on semantic inputs often differ significantly. For in-
stance, two images involving “riding a horse” may have
different point-of-view, different numbers of horses, vary-
ing locations, etc. Unfortunately, obtaining natural images
which are visually similar is non-trivial. To circumvent this
issue, we look into image generation models, in particular,
InstructPix2Pix [3] (IP2P) which builds on Stable Diffu-
sion [32] to allow image edits. We use a subset of the dataset
from IP2P for RAIV.

Reasoning Task. Since we have the ground-truth annota-
tions for both visual inputs, we can further provide a reason.
For instance, if the original statement was “False”, the reason
could be “obj-X is present in both image-1 but not in image-
2”. Even though the reasoning can be posed as a generation
task, evaluation metrics for language generation can often
be unreliable. To keep the evaluation straightforward, we
instead opt for a 3-way multiple-choice over pre-generated
reasons. The model is provided the original query along
with each multiple-choice option separately and the highest-
scoring option is chosen. We evaluate the Reasoning Task
separately from the RAIV task.

Natural Language Queries. A key issue with using
template-based queries is the limited types of variation of
the queries. However, human annotation would be very ex-
pensive. To address this problem, we utilize the advances in
Large Language Models such as LLaMa [44], GPT4 [26].
In particular, we provide captions and/or SRLs for a particu-
lar image/video and require the LLM to create a True/False
question. Note that the LLM doesn’t have access to the
image/video but only the annotations. We utilize Vicuna-
13B [50] model to obtain these queries. We discuss dataset
creation in more detail in Section 4.1, and provide examples
of generated queries in supplementary.

3.2. Framework

Model Design. For our experiments, we utilize a patch-
based vision-language transformer trained on image-text
corpora based on METER [11]. To accommodate RAIV
tasks, we use a late-fusion model where given an image-
image-text as input, the model processes imagel-text and
image2-text separately concatenates the output, and passes it
to a binary classification head which is trained using binary
cross-entropy (BCE) loss. An overview of our model design
is provided in Figure 3.

The images/videos are provided with ID number embed-
ding to denote if it is the first or the second image/video.
Since RAIV tasks also include videos, we extend the ME-
TER framework to process multiple frames. Specifically,
we sample k frames (k=4 in our experiments) from the

video, add temporal position embedding ,and concatenate
the patches from each of these frames and pass it to the
METER module. We don’t differentiate between image and
video type; instead, consider images as single-frame videos.

For Reasoning Task, the original input text is appended
with one of the possible choices at a time and fed to the
network. We re-use the same model framework and train
with BCE loss. During inference, the model returns the
choice with highest score.

Task-specific Pre-Training. As noted earlier, the pre-
training objectives such as masked-language modeling,
image-text matching, and contrastive learning primarily con-
sider single visual input which is characteristically different
from RAIV task requiring models to consider two inputs. To
this end, we propose a second pre-training step where the
objective is the same as that of the downstream task. We de-
note this as task-specific pre-training. This is different from
fine-tuning which requires the downstream dataset; here we
only require the objective which is independent of the down-
stream dataset. For instance, if a model is pre-trained on
COCO-Captions [22] and the target task is VQA, the second
pre-training step would involve generating QA-pairs from
the available image-text pairs in COCO-Captions.

For RAIV task, since we don’t have access to detailed
SRL information in the pre-training web curated dataset,
we utilize a state-of-art SRL system [39] on the paired text
samples to obtain visual semantic roles and use object detec-
tors to obtain the entities. Given this information, designing
objectives is straightforward: we use similar templates as
that for RAIV datasets but mine these during the training
step itself. Specifically, for a particular image/video instance,
we retrieve another image/video from our set with at least
one shared object and then construct a template query from
the two annotations. Further, we can perform this retrieval
process dynamically at train time.

4. Experiments

We discuss the dataset creation details (Section 4.1) fol-
lowed by key implementation details (Section 4.2) and then
results and takeaways (Section 4.3).

4.1. Datasets

We design datasets for RAIV to have (i) rich seman-
tic representation using existing vision-language datasets
which contain SRL annotations, namely, ImSitu [47] and
VidSitu [36] (ii) visually similar inputs using generative mod-
els like Stable Diffusion [3,32] (iii) provide a reason for the
classification. (iv) allow natural queries by passing annota-
tions to an LLM. A summary of the dataset statistics can be
found in Table 1.

For rich semantic representation, we create the following
variations: Image-Image (Im-Im), Image-Video (Im-Vid),
and Video-Video (Vid-Vid) with images taken from ImSitu



| U-Im U-S  I-Tr  I-Val I-Test I-Tot

Im-Im (T) 63k 54k 945k 135k 27k 135k
Im-Vid (T) | 169k 65k 1099k 15.7k 31.4k 157k
Vid-Vid (T) | 106k 62k 1043k 149k 29.8k 149k

IP2P (G) 75k 150k 105k 15k 30k 150k
Im-Im (G) 63k 75k 105k 15k 30k 150k
Im-Vid (G) | 169k 75k 105k 15k 30k 150k
Vid-Vid (G) | 106k 75k 105k 15k 30k 150k

Table 1. Dataset Statistics for RAIV datasets. U-Im, and U-S
denote unique numbers of images and sentences, respectively. I-
{Tr, Val, Test, Tot} denotes the number of instances. Note that in
template-based queries some sentences are duplicates.

and videos taken from VidSitu. We note that while videos
in VidSitu are 10 seconds long, for our experiments we
only consider 2 second long clips which correspond to a
particular event in the video. We utilize the same splits as
in the original datasets to avoid any training dataset leakage
into validation splits. For each of the datasets, we create
approximately the same number of samples as in NLVR2
around 120k annotations with an even distribution of the
verbs and objects but we note that our process allows creating
more examples without any additional human effort. We
further take care to not introduce any spurious dataset bias.
Similar to NLVR2, we create balanced validation and test
sets using the same unique statement where it is true for a
particular pair and false for another pair in the given dataset
to ensure no language-only bias in the dataset. Finally, we
split the dataset into Train, Val, and Test in a 7:1:2 ratio
making sure no leakage of visual inputs. We use the suffix
“T” to denote the statement queries based on templates.

To obtain natural language queries for the above dataset,
we use LLM in particular Vicuna-13B. We input the semantic
roles for the two images and require the LLM to provide
a true statement. We use the suffix “G” to denote such
statements which are obtained using LLMs.

We use the template-based dataset (suffix “T”) for the
reasoning task. Since the queries themselves were based on
templates, and we have access to the ground-truth informa-
tion, we create 3-way multiple choice questions and require
the model to choose a correct answer. We opt for multiple-
choice due to ease of evaluation similar to previous work in
common-sense reasoning [19,48]. We note that only “False”
statements are used in the Reasoning Task.

For visually similar inputs, we use the dataset provided
by InstructPix2Pix (denoted by IP2P) which contains pair of
images, both generated via Stable Diffusion but with some
key edits to the text. The captions for the original images,
as well as the edit caption, are provided. To obtain a true
statement, we input both the original and the edit caption to
a LLM (Vicuna-13b) to obtain the output caption. To obtain
a false statement, we input the original caption but change

the edit caption. We provide more details on dataset creation,
statistics and visualization in Appendix A.1.

Pre-Training Datasets. We closely follow previous work
[11,21]. In particular, we use the METER pre-trained model
which is pre-trained on CC3M [38], SBU [27], COCO [22]
and Visual Genome [17].

Task-specific pre-training We leverage COCO-Captions
for images which includes 5 captions per image and VATEX-
en [46] for videos which is a subset of Kinetics-400 videos
consisting of 25k videos with 10 captions each. To obtain
action-object information we utilize SRL labeling system
[39] on the provided paired caption for both COCO-Captions
and VATEX-en.

4.2. Baseline and Implementation Details

Baselines. As noted in Section 3.2, we build on the ME-
TER model. Specifically, we use the pre-trained checkpoint
based on CLIP-VITB/16 [29] with Roberta [23] (named
METER-CLIP16-RoBERTa-288) which is trained on multi-
ple image datasets namely, CC3M, SBU, COCO, VG. For
convenience, we call this collection of datasets ImgAll. Apart
from fine-tuning the pre-trained checkpoint, we also consider
a random baseline that simply performs a majority voting, a
no pre-training baseline where the model is directly trained
on the downstream datasets.

Implementation Details Our model and code are im-
plemented in Pytorch. For all fine-tuning experiments, we
follow identical settings as METER. For videos, we sample
K =4 frames per video where each video is 2 seconds long
and sampled at 30 frames per second and use sinusoidal
position embeddings [45].

In the task-specific pre-training step, we primarily use
the COCO dataset instead of the entire ImgAll dataset in
order to limit computation time, similar to the fine-tuning
process on the downstream task. We also note that instead
of using the object annotations available in COCO, we use
the VinVL object detector outputs instead as it detects a
larger number of categories outside of COCO. For videos,
we use a subset of Kinetics videos from VATEX-en. We note
that the videos in Kinetics are 10s long compared to 2s in
the downstream dataset. To circumvent this issue, we first
obtain an intersection of the videos from AVA-Kinetics [20]
which gives us 5.7k videos where the keyframe of the person
performing the action is provided. We particularly sample 2s
clips around the keyframe. In general, we randomly sample
4 frames from the entire video.

We train for 10 additional epochs but reduce batch size
to 256 with AdamW optimizer [24] with linear warm-up
for initial 10% to 1e — 4 of the training followed by linear
decay. We only utilize the last checkpoint and then perform
fine-tuning on the target dataset. We provide detailed hyper-
parameter settings in supplementary (Appendix B).



Pre-Training ~ TSPData | NLVR2 | Im-Im (T) Im-Vid (T) Vid-Vid (T) | IP2P | Im-Im (G) Im-Vid(G) Vid-Vid (G)
Majority voting | 50 | 50 50 50 | 50 | 50 50 50
X X 54.52 57.23 52.53 51.84 | 5176 | 5266 5275 51.08
ImgAll X 82.05 70.61 65.64 5934 | 6872 | 68.16 67.80 64.63
ImgAll COCO 83.43 74.82 66.48 59.4 70.15 | 71.06 68.24 65.23
ImgAll  COCO +VTX | 83.57 74.12 68.3 6182 | 7004 | 7125 70.77 66.83

Table 2. Accuracy@1 of fine-tuned pre-trained models on NLVR2 and RAIV datasets. All models are obtained from METER. Pre-Training
refers to data used for pre-training. TSP Data refers to data used for task-specific pre-training which is obtained from COCO and VATEX.
(T) and (G) refers to whether the statements are obtained via template or generated via Language Model. NLVR2 refers to NLVR2-dev set.

Pre-Training TSP Data ‘ Im-Im (T) Im-Vid (T) Vid-Vid (T)
Majority Voting ‘ 33.33 33.33 33.33
X X 34.29 34.37 34.37
ImgAll X 56.32 49.86 44.73
ImgAll COCO 62.17 52.9 46.62
ImgAll COCO + VTX 64.11 56.32 51.85

Table 3. Accuracy@1 of fine-tuned pre-trained models on the
Reasoning Task of RAIV datasets.

4.3. Results

In Table 2, we report results on the True/False classifica-
tion task of various RAIV datasets. In Table 3, we report
the results for the Reasoning task (Multiple Choice Ques-
tion) for the same baselines. We note that the reasoning
task is treated separately from the classification task. “Ac-
curacy @1 is the metric used everywhere. We make the
following observations.

Pre-Training is quintessential In both Table 2 and Table
3 we note that without pre-training the model performs very
similar to a simple majority voting. The main reason is the
extremely sparse signal in the RAIV task which requires two
visual inputs but provides only a singular true/false as output.
Thus, there is not enough training signal for the model to
learn to perform the task.

Importance of Task-Specific Pre-Training Across all
RAIV datasets, we find that Task-Specific Pre-Training is
helpful but the relative improvements depend on the specific
dataset. On the image-image datasets, the improvements
vary from ~ 1.5 points in NLVR2, IP2P, and Im-Im (G) to ~
4 points in Im-Im (T). However, for image-video and video-
video datasets, simply using images for task-specific pre-
training is not effective, leading to only small improvements
~ 0.5 points. But when videos are added to the task-specific
pre-training routine, the improvements are significant in the
range of ~ 2 — 3 points.

Image-based RAIV has Lower performance than
NLVR2. In Table 2 we note that models perform worse on
Im-Im (T), Im-Im (G) as well as IP2P compared to NLVR2.
For the first two, we attribute this discrepancy to the fact that

Im-Im datasets explicitly consider actions that lead to the
queries having richer semantics. For IP2P, the visual similar-
ities between the two images are very high since they have
very minor edits. Another possible reason is that IP2P is
very diverse in terms of objects which may not be sufficiently
covered in the pre-training datasets.

Template Queries vs Generative Queries In Table 2 we
find that compared to generative queries, the template queries
are easier for Im-Im but harder for Im-Vid and Vid-Vid. This
is likely because, for Im-Im (T) case, the templates used in
task-specific pre-training resemble those in the downstream
dataset. Conversely, for Im-Im (G) dataset, the model needs
to learn from natural language generation and not templates.
On the other hand, in the Im-Vid and Vid-Vid datasets, the
generated queries often include additional information such
as objects present in the video which could be controlled in
the template-based queries.

4.4. Ablative Study

We perform multiple ablative studies such as the effective-
ness of the model architecture, framework and task-specific
pre-training against downstream data, using random vs con-
ditional sampling.

Task-specific Pre-training with other image pre-
trained baselines In Table 4 we introduce additional image-
pre-trained vision-language models to verify the effective-
ness of task-specific pre-training. We compare to METER,
ALBEF [21] and VinVL [49]. For ALBEF, we use ALBEF-
4M and for VinVL we use Oscar-B w/VinVL. ALBEF is
similar to METER in that it uses a patch-based vision trans-
former [10] but additionally includes knowledge distilla-
tion during pre-training but notably the vision module is
initialized from ViT-B/16 compared to CLIP-ViT-B/16 for
METER. VinVL on the other hand uses an object detector
(Faster-RCNN [31]) to extract relevant object features. In all
cases, we find task-specific pre-training is helpful and pro-
vides a consistent improvement in performance (~ 2 — 3%).

Across architectures, METER outperforms ALBEF as
its vision transformer is initialized from CLIP. METER and
VinVL have similar performance as object features from the
strong object detector plays an important role for the latter.



Model | NLVR2 | Im-Im (T) Im-Vid (T) Vid-Vid (T) | IP2P | Im-Im(G) Im-Vid (G) Vid-Vid (G)
METER | 82.05 70.61 65.6 59.34 68.72 | 68.16 67.8 64.6
+TSP | 83.57 74.12 68.3 61.82 70.15 | 7125 70.77 66.83
ALBEF | 80.24 67.41 62.35 58.14 67.15 66.5 65.84 61.41
+TSP | 81.07 70.76 66.13 60.77 70.13 68.4 68.35 64.77
VinVL | 82.05 69.14 64.7 59.83 67.29 |  68.42 67.72 65.2
+TSP | 84.56 74.81 69.84 61.96 71.8 71.45 69.76 67.45

Table 4. Accuracy @1 across RAIV datasets using image pre-trained baselines with and without Task-Specific Pre-Training (TSP) which

uses data from COCO + VTX.

% 1P2P — 1 % 10% 50% 100 %

Early 53.11 5891 63.88 67.48

+ TSP 63.16 66.17 68.45 71.88

Mid 57.13 61.17 6595 69.29

+ TSP 642 6747 68.15 71.21

Late 56.28 60.91 64.51 68.72

+ TSP 59.61 63.71 66.18 70.15

Table 5. Accuracy @1 for different fusions (early, mid, late) with
varying amounts of data from IP2P.

Task | Dataset | Rand Cond
Im-Im (T) | 72.67 74.12

RAIV Im-Vid (T) 67.1 68.3
Vid-Vid (T) | 60.64 61.82

Im-Im (T) | 59.55 64.11

Reasoning | Im-Vid (T) | 52.15 56.32
Vid-Vid (T) | 48.87 51.85

Table 6. Accuracy@1 for Random vs Conditional Sampling for
RAIV and Reasoning tasks. By default, conditional sampling is
used for task-specific pre-training.

Effect of Fusion Strategies In Table 5 we compare dif-
ferent strategies for fusing information for IP2P dataset. As
noted earlier, by default we use Late-Fusion where infor-
mation from both visual inputs and text is processed by the
model and then the [CLS] feature from both inputs is used
for classification. In addition, we also compare Mid-Fusion
where instead of using [CLS] feature directly, we add two
transformer encoder layers to the output before classifica-
tion. For Early-Fusion, we directly input the two images
and the text. We find that when using 100% of the data,
early fusion performs slightly worse than both mid and late
fusion but performs slightly better when using task-specific
pre-training. We attribute this to early fusion being more
data-hungry. We also find Mid-Fusion slightly outperforms

Late-Fusion (71.21 compared to 70.15) likely due to addi-
tional transformer layers.

Using Limited Fine-Tuning Data In Table 5, we also
compare effect of using limited data for fine-tuning. We note
that obtaining high-quality data tailored for downstream
tasks is often expensive. Thus, task-specific pre-training
which leverages existing pre-training data with different ob-
jectives is an attractive alternative. We find this to be the
case, especially for Mid-Fusion where using task-specific
pre-training and fine-tuning on just 10% of IP2P data leads
to similar performance as directly fine-tuning on the entire
downstream dataset.

Sampling strategy in Task-specific Pre-training During
the task-specific pre-training stage, since creating the visual
pairs is performed on the go and different sampling strategies
can be utilized. For a given image, we could either sample
a random image (Rand) or we could condition it on some
objective such as having at least one common object (Cond).
Comparing the two for both RAIV and the Reasoning task,
we find the conditional sampling to be useful likely due to
training on harder examples.

Visualization We provide qualitative analysis of our
model outputs in Appendix C.

5. Conclusion

In this work, we explore Reasoning Across Images and
Video (RAIV) task which involves classifying a statement
about a pair of visual inputs (images, videos or a mixed
combination) as true or false. We introduce multiple datasets
to study RAIV with semantically rich queries, and visually
similar inputs as well as allow reasoning for the provided
answers. We investigate the potential for task-specific pre-
training which involves additional pre-training on objectives
similar to the downstream task but confined to the original
pre-training dataset. Our experiments validate the effective-
ness of including task-specific pre-training for improved
downstream performance.

Acknowledgement: We thank the anonymous reviewers for
their suggestions. This research was supported, in part, by the
Office of Naval Research under grant #N00014-21-1-2802



Appendix
The appendix includes
1. Details on dataset creation and statistics.
2. Implementation details for the various baselines.

3. Visualization of outputs.

A. Datasets
A.l. Creating Datasets for RAIV

We first discuss the creation of Im-Im, Im-Vid and Vid-
Vid datasets which are aimed to have semantically rich rep-
resentations.

RAIV tasks involve a pair of images/videos and a given
statement to be classified as True or False. We create multi-
ple datasets using existing vision-language datasets which
contain SRL annotations, namely, ImSitu [47] and Vid-
Situ [36]. The main reason for choosing datasets with SRL
annotations is to obtain high-quality “action+object” infor-
mation in the image or video. We first summarize these two
datasets.

Briefly, the ImSitu dataset is created by first obtaining a
set of verbs and their corresponding roles from FrameNet
[33]. Then top image results are retrieved from the web
which includes the particular verb, followed by a strict an-
notation pipeline to denote the various entities participating
in the action. The VidSitu dataset, which serves as an exten-
sion of ImSitu to videos, obtains 10-second-long movie clips
with multiple actions. Each video is then segmented into five
2-second events, with each segment annotated with a verb
obtained from PropBank [16]. Then, a referring expression
is used to denote the entities appearing in the videos, which
are filled in the various roles.

For both ImSitu and VidSitu, we obtain the “object” in-
formation from an object detector. We utilize VinVL [49]
which involves a FasterRCNN [3 1] trained on multiple ob-
ject detection datasets OpenImages [ 18], COCO [22], Visual
Genome [17] and Object365 [37], and then fine-tuned on
Visual Genome.

We note that both ImSitu and VidSitu use different sets
of verbs for annotations. Since our datasets include both
images and videos, we simplify our setting by only utilizing
verbs that are common to both datasets. While this reduces
the total amount of available data, it hugely simplifies the
dataset creation pipeline. We also prune verbs with less than
20 annotations in either dataset. This results in 243 verbs
which are shared in both datasets.

Another issue arises in the semantic role labeling for-
mats for the two datasets. ImSitu annotations are based on
FrameNet [33] whereas VidSitu annotations are based on
PropBank [16]. We use existing heuristics based on the order-
ing and the use of roles to map the SRLs from FrameNet to

Propbank annotations. Since we are mostly concerned about
the “action+object” setting and not the individual roles such
as instruments or tools, noise in this conversion doesn’t ad-
versely affect the dataset quality. Further, the annotations for
the entities in VidSitu have referring expressions or phrases
describing the entity which is different from entity annota-
tion in ImSitu containing only a single noun. We circumvent
this issue by considering only the lemmatized noun for the
referring expressions. We also avoid very common objects
such as “person” which is usually associated with the agent
performing an action.

With both ImSitu and VidSitu datasets in hand, we now
create RAIV datasets. We create the following variations:
Image-Image (Im-Im), Image-Video (Im-Vid) and Video-
Video (Vid-Vid) with images taken from ImSitu and videos
taken from VidSitu. We note that while videos in VidSitu
are 10 seconds long, for our experiments we only consider 2
second long clips which correspond to a particular event in
the video. We further ensure the event is not duplicated in
the next segment to avoid annotated entities not appearing
within the given segment. After pruning, we are left with
63k images from ImSitu and 106k video segments from
VidSitu. We utilize the same splits as in the original datasets
to avoid any training dataset leakage into validation splits.
For each of the datasets, we create approximately the same
number of samples as in NLVR2 around 120k annotations
with an even distribution of the verbs and objects but we
note that our process allows creating more examples without
any additional human effort.

We further take care to not introduce any spurious dataset
bias. We follow NLVR?2 in creating balanced validation
and test sets by using the same unique statement where it
is true for a particular pair and false for another pair in the
given dataset to ensure no language-only bias in the dataset.
The resulting datasets are suffixed with “T” to denote the
statements are generated using templates resulting in Im-Im
(T), Im-Vid (T), and Vid-Vid (T).

As our datasets are created semi-automatically, we also
provide reasons for the false statements. For ease of eval-
uation we follow previous work in common-sense reason-
ing [19,48] involving multiple-choice question setup where
three reasons are provided and only one of the reasons is cor-
rect. The options are also generated via templates to prevent
any language-only biases.

We summarize our pipeline for creating RAIV template
datasets, i.e., Im-Im (T), Im-Vid (T), Vid-Vid (T) below.

1. Unify the annotations for ImSitu and VidSitu datasets,
in particular the verbs.

2. Create mapping of objects, actions, and action+objects
to image/video IDs in the datasets.

3. Sample a particular template based on object, action, or
action + object. Then choose a particular object, action,



(a) Verb: crouch, Arg0:
man, Loc: desert
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(c) Verb: dance, Arg0: A man in blue shirt, Loc: In the lab

Figure 4. Example creation of generating template-based queries.

action+object.

4. Choose a particular image/video satisfying the above
criteria.

5. Choose two other image/video, one which satisfies and
another which doesn’t satisfy the criteria. This provides
us with a True and False statement.

6. In previous step, choosing them at random makes the
problem too simple, so we condition it on having at
least one shared SRL such as verb, object or location.

7. For the false statement, provide the reason for being
false.

8. Repeat the process until enough samples are obtained.

We illustrate this with an example in Fig 4. Suppose
the chosen template was “action”, “In both images, people
are doing X" where “X” is the action. Assume the chosen
action was “crouch”. Let the first sample chosen be Fig 4
(a). Given this image, we choose a “true” video as in Fig
4(b) and “false” video (c). Further, for the “false” pair, we
know both contain the verb crouch, so we can provide the
reason “people crouch in I1 but not in 12.”.

We note we restrict to limited possible templates yet cov-
ering a wide-variety of possibility based on whether it is
“action”, “object” or “action + object”. The possible tem-

plates are:
1. "Inboth I1 and 12, {p1}."
2. "In at least one of I1 or 12, {p1}."
3. "In exactly one of Il or I2, {p1}."
4. "In neither I1 nor 12, {p1}.

Here, {p1} is short for placeholder and {Image} refers
to Imagel or Image2. We also note that the clause can be
easily modified such as “In both I1 and 12, {p1}” is same as
“{pl} in both I1 and I2”. The placeholder {p1} depends on
the type of template. For instance, if it is object, it is “Obj is
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present”, for actions it is “Subj is performing Verb”. These
templates can then be used to get the reasoning in the form
of: “In both I1 and 12”, “In I1 but not in 127, “In I2 but not
in I1” or “In neither I1 nor I12".

Note that for during training, the SRLs are obtained from
a pre-trained SRL detection system on the provided captions
such as [39].

For validation and test sets, we utilize all the available
annotaitons. For instance, VidSitu provides 10 verb anno-
tations for each segment. Thus, when comparing for same
verb, we consider all 10 annotations. Similarly, for other
SRLs. This makes our validation and test sets more robust
to noisy ground-truth data.

A.2. Creating Natural Language Queries

As noted in main paper, we utilize LLMs to create Natural
Language Queries. We note that there are both pros and cons
of using natural language queries as opposed to template
queries. The main advantage of templated queries is that
the output sentence has very controlled information and as a
result we can create a reasoning question directly from the
template. However, such model is of little practical use.

On the other hand, natural language queries can be
directly used by end-user but obtaining natural language
queries via humans is prohibitively expensive. Instead, we
opt to use natural language queries using LLMs. However,
we note that use of LLMs can cause errors in the generated
sentence and there is no easy way to rectify them. Further,
the obtained LLM outputs cannot be used for reasoning.

To generate the queries, we use Vicuna-13B [50] model
which is initialized from LLaMA [44] and trained on outputs
from ChatGPT [26] a closed-source model by OpenAl.

We use the LLM in two ways: (i) to create Im-Im (G), Im-
Vid (G) and Vid-Vid (G) which are generated counterparts
to the original templated datasets introduced above (ii) to
create IP2P dataset which is obtained from InstructPix2Pix.
While used in similar ways, there are some key distinctions.

For Im-Im, Im-Vid and Vid-Vid datasets, we directly take
all the visual input pairs, obtain their annotation information



and pass it to the LLM and require it to generate a True
statement. The obtained statement is then matched to another
input pair for which it is false. Essentially, the “T” and “G”
counterparts of the dataset have same visual input pairs but
the exact sentences are different.

We prompt our LLM based on the original input query in
the templated dataset. We use the following input:

""" Provide a True statement comparing the two images
with the following information:

Image 1: {SRL} Image 2: {SRL}

The statement should be in the form of "{Template}, ...",
only point out about {Image}. """

Here, {SRL} denotes the semantic roles for the given
image/video, the {Template} denotes the chosen template as
noted in previous section, and {Image} denotes which image
was chosen (I1 or I2) for the true statement.

For instance, if the original query involved Fig4 (a), (c)
with the template “In exactly one of”’, with action+object,
the input would be:

""" Provide a True statement comparing the two images
with the following information:

Image 1: Verb: crouch, Subj: man, Loc: desert

Image 2: Verb: dance, Subj: a man in blue shirt, Loc: in
the lab

The statement should be in the form of "In exactly one of
the images, ...", only point out about image 1 """ This returns
the output: "In exactly one of the images, a man is crouching
in a desert." The same true statement is considered “false”
for the other pair taken from corresponding “(T)” dataset.

For IP2P, the images are created using Stable-Diffusion.
We have access to the image-caption pairs as well as the edit
caption. To create a true statement, we provide the LLM with
the original caption and the edit caption and ask it compare
the images. To create a false statement, we keep the original
caption but change the edit caption. Here, for each image
pair we have a unique true and false statement.

To generate these queries:

1. Choose a given image-pair from IP2P dataset. This
has an associated original caption, edit caption, and an
output caption.

2. Randomly sample another edit caption different from
the given edit caption. Denote this as edit caption 2.

3. Use LLM to compare original caption, and edit-caption
for True statement. Similarly, use original caption and
edit caption 2 for False statement.

For generating output with a new caption we use the
following prompt:

""" The original image caption: ...

The original image is modified with the instruction: ...

Provide a true statement comparing original and new
image. """
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Input: Jim Hansel 500 Piece Puzzle (Head Waters)
Edit: turn it into a stained glass window

Output: Stained Glass Window of Jim Hansel (Head
Waters)

The original image caption: Jim Hansel 500 Piece Puzzle
(Head Waters)

The original image is modified with the instruction: turn it into
a stained glass window

Provide a true statement comparing original and new image.

The original image is a 500-piece puzzle
featuring a image called "Head Waters" by
Jim Hansel. The new image is the same
image as the original, but it has been
modified to look like a stained glass
window.

TRUE

The original image caption: Jim Hansel 500 Piece Puzzle
(Head Waters)

The original image is modified with the instruction: have it be
a comedy sketch

Provide a true statement comparing original and new image.

(c)

The original image is a 500-piece puzzle

FALSE featuring the artwork "Head Waters" by
Jim Hansel. The new image is a comedy
sketch.

Figure 5. Illustration of generating queries for IP2P dataset. For a
given image pair, we have (a) the sentence queries used to generate
the image via Stable Diffusion (b) Using LLM to generate a True
statement and (c) False statement by changing the edit caption.

As an example, to generate true statement for given pair :
""" The original image caption: Jim Hansel 500 Piece Puzzle
(Head Waters)

The original image is modified with the instruction: turn
it into a stained glass window

Provide a true statement comparing original and new
image. """

Instead for a false pair:

""" The original image caption: Jim Hansel 500 Piece
Puzzle (Head Waters)

The original image is modified with the instruction: have
it be a comedy sketch

Provide a true statement comparing original and new
image. """



Q: In both 11 and 12, a person is swimming in a pool.

PrA: True
GtA: False

PrR: A person is swimming in a pool in both I1 and 12.
GtR: A person is swimming in a pool in 12 but not in 11

(a)

Q: A man kneels in exactly one of 11 and 2.

PrA: False
GtA: False

PrR: A man kneels in both 11 and 12
GtR: A man kneels in both |1 and 12.

(b)

Q: In neither I1 nor 12, a person is reading a book

PrA: False
GtA: False

(c)

PrR: A person is reading a book in both I1 and 12.
GtR: A person is reading a book in 12 but not in I1.

Figure 6. Model Predictions vs Ground-Truth for template-based (“T”) validation datasets. (a) Im-Im (T), (b) Im-Vid (T), (c) Vid-Vid
(T). PrA and GtA refer to Predicted and Ground-truth Answers respectively. PrR and GtR refer to predicted and ground-truth reasoning

respectively.

B. Implementation Details

Implementation Details Our model and code are im-
plemented in Pytorch. For all fine-tuning experiments, we
follow identical settings as METER. For each dataset, we
separately fine-tune the model for 10 epochs with differen-
tial learning rates of 1e~® and 1e~* for the bottom and top
layers respectively.

We use 288 x 288 as the image dimension in all cases.
For videos, we sample K = 4 frames per video where each
video is 2 seconds long and sampled at 30 frames per second.
For images, we simply provide a single temporal position
embedding while for videos we have K temporal position
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embeddings. We use sinusoidal position embeddings follow-
ing previous work [45].

In the task-specific pre-training step, we primarily use
the COCO dataset instead of the entire ImgAll dataset in
order to limit computation time, similar to the fine-tuning
process on the downstream task. We also note that instead
of using the object annotations available in COCO, we use
the VinVL object detector outputs instead as it detects a
larger number of categories outside of COCO. For videos,
we use a subset of Kinetics videos from VATEX-en. We note
that the videos in Kinetics are 10s long compared to 2s in
the downstream dataset. To circumvent this issue, we first



Q: The original image features a
beautiful young woman with
curly blond hair on a black
leather sofa, while the modified
image features the same woman
with a cat added to the scene.

PrA: True
GtA: True.

Q: The original image is a
photograph of a beautiful young
woman with curly blond hair
sitting on a black leather sofa,
while the modified image is a
sculpture of the same woman in
the same pose and setting.

PrA: False
(a) GtA: False.

Figure 7. Model Predictions vs Ground-truth for IP2P dataset. For a given pair of images, both the chosen True and False sentences are

shown.

obtain an intersection of the videos from AVA-Kinetics [20]
which gives us 5.7k videos where the keyframe of the person
performing the action is provided. We particularly sample 2s
clips around the keyframe. In general, we randomly sample
4 frames from the entire video.

We train for 10 epochs but reduce batch size to 256 with
AdamW optimizer [24] with linear warm-up for initial 10%
to le — 4 of the training followed by linear decay. We only
utilize the last checkpoint and then perform fine-tuning on
the target dataset. Most of our experiments are carried on 4x
2080Ti and 4x 3090Ti machines.

C. Visualization

We provide qualitative examples from our dataset and
outputs of our model as follows:

1. On Template-based queries and Reasoning, namely, Im-
Im (T), Im-Vid(T), Vid-Vid (T) in Figure 6

2. IP2P Generated queries in Figure 7

3. On Generated queries, Im-Im (G), Im-Vid(G), Vid-
Vid(G) in Figure 8

13

(b)

Q: The original image shows
a wooden house next to the
Iceland sea, while the new
image depicts the same
wooden house but with a
haunted theme.

PrA: True
GtA: True

Q: The modified image has
snow, which is not present
in the original image.

PrA: True
GtA: False



Q: In both images, a woman is performing an

action with a rope in a gymnasium. The action Q: In exactly one of the images, a man in white pants is
being performed is skipping in the first image and depicted as falling.
climbing in the second image.
PrA: False
PrA: True GtA: True

GtA: True
(a) (b)

Q: In at least one of the images, a girl with brown hair is depicted as grabbing a CD.

PrA: False
GtA: True

(c)

Figure 8. Model Predictions vs Ground-Truth for generated queries (“G”) validation datasets. (a) Im-Im (G), (b) Im-Vid (G), (c) Vid-Vid
(G). PrA and GtA refer to Predicted and Ground-truth Answers respectively.
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