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Abstract

Existing state-of-art vision-language models follow the
widely-used recipe of pre-training on a large corpus of
image-text pairs followed by fine-tuning on one or more
downstream tasks. Similar methods have also been shown
to be successful in video-language tasks. However, such
pre-training schemes are inherently restricted by the avail-
ability of large-volume of high-quality paired video cap-
tions, often only found in particular video domains such as
stock footage or instructional videos. To address this limita-
tion, we explore utilizing unaligned vision and text corpora
with two distinct advantages: (i) access to orders of mag-
nitude more unaligned data (ii) such unaligned data can be
obtained for diverse domains. We show that our proposed
iterative alignment method to perform alignment between
vision and language modalities in the pre-training step can
significantly improve downstream task performance com-
pared to no pre-training setup. Experiments on multiple
diverse video-language benchmarks validate the effective-
ness of our approach.

1. Introduction

Vision-Language Pre-training (VLP) has become the de
facto method for tackling most vision-language tasks. In
this paradigm, vision-language models typically based on
transformers [47] are pre-trained on large-scale image-text
corpus [18,26,33,40] and then fine-tuned on downstream
tasks such as QA [ 1], retrieval [53], or captioning [26].

Recent works, such as CLIP [34], use a lightweight text-
encoder to scale VLP in the image-text domain to very large
corpora in the order of hundreds of millions of image-text
pairs. Visual features learned by such models have proven
to be very powerful [41]. They can be used as an initial-
ization for the vision-backbone for VLP on an image-text
corpus with a powerful text encoder [10,24].

Despite the abundance of video data, extensions to the
video-text domain [50] have yet to show similar improve-

*Arka was an intern at Meta Al

Animesh Sinha 2
!University of Southern California

Ram Nevatia® 2

2 Meta Al

Yu Chen 2 Ning Zhang

{lichengyu, animeshsinha, hugochen, ningzhang}@meta .com

(b) Two young people having fun
on the beach early morning.

(a) Two men arguing conflict
after a car accident on the road.

High Quality Video-Text Pairs

o’ P
I

(c) First thing to check at hotels.  (d) Harry Potter Sorting Ceremony

Low Quality Video-Text Pairs
r\ The librarian

Apersonran | | then turned
her hands back to her
through her computer
hair. screen.

Wind dragged
hair across her
face and the rain
blew in sideways.

m Y B

Figure 1. (a,b): Video-Text Pre-Training requires high quality
video-text pairs such as those obtained from stock footage. (c,d):
Video-text pairs from other domains, such as short-form user gen-
erated videos or movie-clips, are often uncorrelated and cannot be
used for pre-training. We propose the task of Unaligned Video-
Text Pre-Training (UVTP), where we leverage existing unimodal
vision and text corpora to pre-train vision-language models.

ments in video-text tasks. We posit that a key reason for
this discrepancy is that highly correlated paired video-text
data for videos is available in limited domains such as



stock-footage [4] or instructional videos [32]. To bridge
this gap, previous work [! 1, 30] initialize the video back-
bone using weights from image-text pre-trained networks
such as CLIP. Such initialization leads to significant im-
provements in downstream tasks, especially retrieval based
tasks. However, further investigation [21] attributes these
improvements to purely better image understanding model
rather than any progress in video understanding.

In this work, we investigate a different approach; we
observe that while paired video-text is limited to specific
domains, unaligned videos and text data are available in
vast amounts in both modalities. Successfully exploiting
such unaligned data has two-fold advantages: first, orders
of magnitude more unimodal data can be obtained from
the web compared to paired data, and second such un-
aligned data is not restricted to any particular domain. In-
spired by previous works in unsupervised machine transla-
tions [19,20] and unaligned image-text pre-training [25,57],
we propose the task of Unaligned Video-Text Pre-Training
(UVTP) i.e. pre-training on unaligned video-text data. We
illustrate this fundamental idea in Figure 1.

There are two primary considerations for pre-training on
unaligned video-text data. First, the method should be scal-
able. As a result, naively extending previous unaligned
image-text pre-training methods like U-VisualBERT [25]
and UVLP [57], which use object detection features [39,

], is not an option. This is because computing object fea-
tures for each frame is bulky, making the storage of such
features and the data-loading process cumbersome.

Second, we need an initial alignment between the video
and text modality. Unlike unsupervised machine-translation
tasks [19, 20], where we have access to human-curated dic-
tionary mapping between words and phrases for various lan-
guages, we don’t have any equivalent mapping for videos
and text. This problem is exacerbated by the fact that
mapping between the two modalities is not one-to-one but
many-to-one mapping. Thus, without any initialization of
the alignment, learning from unaligned vision text corpus
becomes an ill-posed problem. For instance, naively pre-
training on random pairs of image and text will not lead to
any meaningful improvements in downstream tasks.

To address the first issue, we focus on methods to learn
directly from raw video frames. In particular, we extend ex-
isting image-text transformer, such as METER [10], to han-
dle video frames by duplicating the vision-backbone. To
tackle the second issue, we consider two cases: (i) a fully
unaligned setting where we don’t have access to any paired
vision-data and (ii)a semi-supervised setting where we have
access to limited paired vision-text data. For the first case,
we exploit co-occurrence heuristics - if the same objects ap-
pear in a video and in a sentence, the two are likely to be
correlated. Similar strategy is used in previous unaligned
image-text pre-training, such as UVLP [57]. For the second

case, we utilize the existing paired data to pre-train a model
and then use it to retrieve the best matching text for a given
video. We detail our model design in Section 3.1 and the
two settings in Section 3.2.

While a given alignment between the two modalities
would allow pre-training, the efficacy of the pre-trained
model is constrained by the initial alignment. We motivate
this by showing that pre-training on a more aligned video-
text corpus leads to improved downstream performance. To
mitigate this issue, we propose to utilize the already pre-
trained model to re-align the two modalities after a fixed
number of training iterations. The updated pairs from this
new alignment is used in the pre-training process till con-
vergence. We describe our proposed method, Tterative
Alignment, in Section 3.3.

To study pre-training on unaligned video-text corpora,
we follow previous work [25,57] by first creating a shuffled
dataset from existing image-text (CC3M [40], SBU [33],
COCO [26], VG [18]) and video-text (WebVid-2M [4]) cor-
pora. In other words, we artificially remove the correspon-
dence between the text and image/video instances. Such
a simulated testbed allows performing fine-grained ablative
studies and guarantees existence of close text match for ev-
ery image/video. We then extend this to a realistic setting
by considering keeping the same images/videos but using
text from a completely different corpora such as BookCor-
pus [59].

Experiments on multiple downstream tasks such as
video-QA [49], video retrieval [2, 51], action localization
[45] and segmentation [60] show the benefits of using ad-
ditional unaligned video text corpora. We further find
Iterative Alignment improves downstream perfor-
mance compared to having a fixed alignment.

Our main contributions are (i) a systematic study of un-
aligned pre-training on video-text data (ii) a method to it-
eratively refine alignment to drive better downstream per-
formance (iii) detailed ablative study and benchmarking to
guide future work.

2. Related Works

Image-Language Pre-Training is a heavily studied
topic.  Inspired by the success of masked-language-
modeling (MLM) for large-scale language pre-training [8,

, 35], earlier works such as LXMERT [44], VILBERT
[29], VL-BERT [43], UNITER [6] extended the success of
BERT to image-language domain using pre-extracted object
features. These works utilized existing paired image-text
datasets such as COCO [26], VG [18], CC3M [40], SBU
[33]. More recent works such as ViLT [17], ALBEF [24],
METER [10] opt for vision-language transformers which
can directly learn in an end-to-end fashion. These models
are supported by vision-transformers [5, 9, 46] for their vi-
sual backbone. In this work, we follow recent trend and



opt for end-to-end learning. This is particularly important
in video-language domain where saving and loading bulky
object features can become a bottleneck.

Video-Language Pre-Training has been supported by
the availability of large-scale video-text corpora such as in-
structional videos from HowTo100M [32] and stock footage
from WebVid-2M [4]. While other large video-text corpora
such as those based on movie clips [3, 14] exists, the corre-
lation between the visual scene and the paired text is often
poor making them unsuitable for large-scale pre-training.
Prior work can be broadly classified based on its visual
backbone: space-time encoders [4,23,31] or shared image-
encoders [21,22,54,55]. Our work follows the second ap-
proach. We extend existing image-language framework to
incorporate video frames.

Very Large-Scale Image-Language Pre-Training have
recently gained immense popularity. Two prominent works
include CLIP [34] and ALIGN [16]. These models perform
contrastive-learning using a simple dual-encoder image-
language transformer model but scale it to hundreds of mil-
lions or billions of images. The resulting vision modules
can be used to initialize visual backbones in an image-
language transformer which leads to dramatic improvement
in downstream image-language [41]. However, similar im-
provements have yet to be observed in video-language do-
main. The best known example is VideoClip [50] which
exhibits zero-shot capabilities but is outperformed by CLIP-
based models on multiple retrieval tasks [11,30,52].

Unaligned and Semi-Supervised Video-Language
Training is unexplored but there are related works in
image-language domain. U-VisualBERT [25] first intro-
duced the task of learning from unaligned image-text cor-
pora and used a shared transformer for both masked lan-
guage modeling and masked image modeling with the ob-
ject tags being the implicit bridge between the two do-
mains. UVLP [57] expands on this idea and observes
that better alignment in pre-training leads to better down-
stream performance. Our work extends the idea to videos
but differs in two key ways. First, both UVLP and U-
VisualBERT used object detection features which cannot be
extended to videos due to scalability. Second, both con-
sider a fixed alignment case and only depend on heuris-
tics to align the two domains whereas we propose iterative
alignment to improve the alignment. We further explore the
semi-supervised setting where we are provided a fraction of
aligned data but also have access to vast amounts of non-
aligned data which is a more realistic setting.

3. Method

We first briefly describe our model design (Section 3.1)
to allow video-text pre-training. We then formally de-
tail the task of unaligned video-text pre-training (Section
3.2) followed by description of our proposed Iterative
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Figure 2. A schematic of our proposed VMET which extends
image-text transformer (METER [10]) to handle videos. The
vision-backbone duplicates the ViT block (shared weights) and
processes the frames separately. Temporal embeddings are added
to the ViT outputs followed by 2-layers of transformer [47] en-
coders. The text backbone is kept as is. Three losses are used
in pre-training: masked-language modeling (MLM), image-text
matching (ITM) and image-text contrastive loss (ITC).

Alignment to obtain richer video-text pairs.

3.1. Model Design

End-to-end image-language transformers such as AL-
BEF [24], METER [10] support learning directly from raw
image-frames. We propose an extension of such transform-
ers to allow processing both images and videos with small
overhead. An alternative way would be to instead use ob-
ject features from a detection model like VinVL [56] such
as in ActBert [58]. We opt for end-to-end learning due to
bulkiness of the pre-extracted features which leads to both
storage and loading bottlenecks with more frames.

In this work, we focus on METER model but note sim-
ilar extensions follow for other end-to-end vision-language
transformers. For videos, we uniformly sample k=4
frames; images are considered single frame videos. We pro-
cess each frame through the image-backbone (ViT [9]), and
then add the temporal position embeddings followed by 2
transformer encoder layers. The text processing part is kept
intact. We also add a contrastive head similar to that used
in CLIP [34] using the first token ([CLS] token) of vision
and text backbones respectively. The model is trained with
Masked-Language-Modeling (MLM), Image-Text Match-
ing (ITM) and Image-Text Contrastive Loss (ITC) respec-
tively. We provide additional model implementation details
in the supplementary. The resulting model dubbed VMET



Model Pre-Training

T | —— i B
| D={T}+ I+ T} | =

I , I I ITC head

i KNN search using My, | Freeze-Model. | of VLP

~  D={v,T}+{V, T after KNN

! { ’ p} \{—urﬂi I Update I t-steps. search

| Pre-Train Ay | Alignment after I

i MLM. ITM. ITC | every N-steps of | ~ (M, )

i ! ! | iteration. | &

i VLP (M, ) — |

i i i

Iterative Alignment

{V,, T,,}: Paired Vision-Text data

T {V, }: Unaligned Vision Corpus

Top-K text fi T,
op-fiextirom fu I {T,, }: Unaligned Text Corpus

Ar = f(Ar1, My, @) I Mg, : Initial Model weights after

l ! training on aligned data.

=SS

! M, : Best-Matching according
| to current model (Mp,)

H

D ={, T} + (W, T}

| a: % training completed.

M, = {V/, T} | £: Update Function

! Ap: Initial Alignment.

- A,: Best Alignment according
to previous alignment and

current matching. Used for
next iteration.

Figure 3. A schematic of our proposed Iterative Alignment. We are provided a VLP model pre-trained on aligned data My, . The aligned
data could be heuristically generated as for fully-unaligned or have been already provided in semi-supervised case. Using Mg, we first
obtain an initial alignment Ag. We pre-train the VLP with the given alignment for IV steps then use the current model My, to obtain a
new matching M;. We then obtain the new alignment A; considering the previous alignment A;_1, the new matching M, percentage of
training completed « and the update function f. The updated alignment is now used to pre-train the model. The process is repeated every

N steps.

is illustrated in Figure 2.

3.2. Task: Unaligned Video Text Pre-Training

The status-quo in VLP is to pre-train a vision-language
model on paired vision-text data. However, obtaining
highly correlated paired video-text is only possible in cer-
tain domains such as stock videos [4] or instructional videos
[32]. Given the large amounts of video and text data in their
respective domains, we define the task of Unaligned Video-
Text Pre-Training in being able to exploit the additional data
for pre-training and subsequently improve downstream per-
formance.

Formally, let D denote the entire video and text data
available to use. Let D,={V,,T,} denote the subset of
paired video-text data and {V,,} and {T,} denote the set
of unaligned video and text data respectively. An im-
plicit assumption is that set of unaligned video and text
corpora is significantly larger than the paired corpus i.e.
min(|Vyl, |Tul) >> min(|V,|, |Tp]). Thus, D={V,, T, }+
{Vu} + {Tu}. Then, the UVTP task requires pretrained
models trained on D to outperform those trained on just
D,,. The main criteria would be better performance on set
of chosen downstream tasks.

With the above notation, we introduce two particularly
important settings. (i) Fully unaligned setting i.e. D,=¢ or
D={V,} + {T,} (ii) Semi-Supervised setting i.e. D, #¢.

Fully unaligned. Here, we don’t have access to any
paired vision-text data. Learning directly from unimodal
data has immense potential for improving downstream tasks
on very diverse domains. Unfortunately, the problem is
ill-defined by construction as we don’t have existing map-
ping between the two modalities. To circumvent this issue,
we utilize an object co-occurrence heuristic i.e. similar ob-

jects appearing in a video and text would make them corre-
lated. This is similar to the weak alignment used in previous
work [25,57]. Essentially, we use the labels from object de-
tection system as a bridge between the modalities.

Specifically, we use an object detection system [37,39]
to detect the objects across multiple frames. Given the set
of unique objects in the video, we create an object string by
simply concatenating all the unique objects in their order of
appearance. Using this object string as a query, we retrieve
the topK (K = 1) matching texts from the text corpus using
a sentence-similarity model such as SentenceBert [38]. We
can then pre-train VMET on the above correspondence to
obtain a retreival model.

Semi-Supervised. Here, we have access to some aligned
video-text data. Different from the “Fully unaligned” case,
this is a more realistic case as there are existing paired
video-text datasets. Recall that our implicit assumption is
the amount of unaligned data is significantly larger than the
paired data. Since we have existing paired data, instead of
using heuristics we can instead pre-train on the paired data
to obtain a retrieval model. This retrieval model can then
be used as a bridge between the two modalities. Similar to
previous case, we can obtain topK text-matches for every
unpaired video instance. We keep the already paired video-
text instances as is.

3.3. Iterative Alignment

For both fully unaligned and semi-supervised case, we
have retrieval model. For the former, the model is trained
on matches obtained via heuristics, while for the latter the
model is trained on paired ground-truth data. Denote this
retrieval model as Myg,. Suppose this alignment obtained
using this retrieval model be called 49 = {V,, T }o. We



Algorithm 1 Pseudo-Code for Iterative Alignment

Require: Data D={V,,,T,,} + {V,} +{T.}
Require: Alignment Update Stride N
Require: Update Function f
Require: Model My initialized as My, ;
1: Initial Alignment Ay = {V,), T" }o;
2: % Training completed o <— 0
3: while o < 1 do
PreTrain My with MLM, ITM, ITC for N steps.
Freeze M. Process {V,,} and {T, }
KNN on ITC output My ={V,, T} }
New Alignment A,={V,,, T, },=f(A;_1, My, )
Update D;={V,,, T,} +{V,,, T\ }4
9: Increment o
10: end while

A

AD 1 0.9 0.75 0.5 0.25 0 NA
Acc 42.01 40.74 41.66 41.10 40.31 34.10 39.35

Table 1. Fine-tune accuracy on MSRVTT-QA for VMET pre-
trained with different amounts of aligned data in WebVid-2M [4].
AD: Fraction of aligned data. NA: Model is fine-tuned without
any pre-training.

use V! instead of V,, to denote not all vision instances have
match. We note that we can directly pre-train VMET on this
initial alignment Ay. We call this Fixed Alignment since the
pairing remains the same throughout the training. However,
the initial alignment so obtained could be sub-optimal.

In Table 1 we note the performance of VMET pre-trained
on WebVid-2M [4] with different amounts of aligned data.
To simulate this, we randomly pair (1—AD) amount of
video-text data while keeping the remaining AD amount
from the original dataset. As can be observed, if the en-
tire alignment is corrupted (A D=0), the model is unable to
learn anything and in fact performs worse than when no pre-
training was involved. We further note that there is a direct
correlation between higher percentage of aligned data and
improved downstream task.

Motivated from the above experiment, if we can train
VMET with improved alignment A’, it would lead to bet-
ter downstream performance. Suppose that the model pre-
trained on the initial aligned data is “good enough”. This
model can itself act as a retrieval system and produce a
matching M between the two corpora. We can utilize the
initial alignment Ag along with the new matching M to
provide an updated alignment. We can then repeat this pro-
cess after every N steps till convergence. This leads us to
Iterative Alignment for which the pseudo-code is
provided in Alg 1. A schematic of the process is provided
in Figure 3.

We note two particular parameters used to obtain the new

alignment A; (Line 7): « the percentage of training com-
pleted and f the update function. We condition the update
on « as we want to prioritize the existing alignment for ini-
tial epochs and the predicted alignment M; by the model in
later epochs. The update function f can be any decay func-
tion, in practice we use a linear decay. For linear decay, we
have A;=(1 — a)A;—1 + aM;.

In practice, we cannot store all the matches since the
number of instances in either modality can be in the order
of millions. To approximate it, we compute Top-50 text-
matches for each video and assume matching score of 0 for
the remaining sentences. We update the scores for the union
of text-matches from the previous iteration (A;_1) and cur-
rent matches (M) weighted by percentage of training com-
pleted a.. Once the scores for the union is computed, we
sort them in a descending order and keep only the top-50
matches, and continue the process.

Fixed Alignment. We note that while Iterative
Alignment is applicable to both fully unaligned and
semi-supervised setting there is a small distinction when
it comes to fixed alignment i.e. A;=Ay. For the fully-
unaligned case, we train our model on the entire unaligned
corpus which is paired using the heuristic (D = {V,,, T.,}).
Thus, fixed alignment is largely equivalent to training with
simply additional epochs with the same paired sets. How-
ever, for semi-supervised case our model was trained only
on the paired data (D, = {V},,T,}). Fixed alignment on
semi-supervised case would include D = D,, + {V,, T}, }o.
Thus, fixed alignment is different from additional epochs
as the training set itself has expanded and now includes the
unaligned data as well.

4. Experiments

We describe the datasets used for our experiments (Sec-
tion 4.1) followed by experimental setup about the baselines
and implementation details (Section 4.2). We then detail our
results in Section 4.3.

4.1. Datasets

Pre-Training Datasets. For image-text datasets we con-
sider CC3M [40], SBU [33], COCO [26] and VG [18], and
for video-text corpus we use WebVid-2M [4].

Shuffled Dataset. To simulate the unaligned setting
we explore training on a shuffled dataset similar to previ-
ous work [57]. Specifically, we use all the images, videos
and text from the above pre-training dataset but remove the
correspondence of the specific vision and text pairs. For
the captions, we remove close duplicates which reduces
the text corpus from 120 to around 9M captions. In the
semi-supervised case, we consider X% aligned data set-
ting where X denotes the percentage of paired vision-text
data with unique image/video instances. When creating
such data, we sample X % from each of the corresponding



datasets and concatenate them. We focus on 10% aligned
setting for the remainder of the paper and provide more X %
cases in supplementary.

BookCorpus Dataset. To simulate a real-world setting,
we use the images and videos from existing corpora but
use texts obtained from BookCorpus [59]. We pre-process
the BookCorpus data to remove sentences with no mentions
of objects, and remove duplicate or very similar sentences.
The resulting text from book corpus has around 12M cap-
tions which is of very similar size as that of the combined
image+video dataset. A detailed processing pipeline can be
found in the supplementary.

Downstream Tasks. For downstream tasks, we primar-
ily consider MSRVTT-QA [49] for video question answer-
ing and MSRVTT for video retrieval [51]. For video re-
trieval we train on the 7K videos. We also consider diverse
downstream tasks such as DiDeMo [2] for paragraph re-
trieval, COIN [45] for action segmentation and CrossTask
[60] for action localization.

4.2. Experiment Setup

Compared Models. We consider NP-VMET case where
the VMET is directly fine-tuned on the target downstream
dataset. Here NP denotes No Pre-training. This serves as a
lower-bound for almost every dataset.

For the fully unaligned setting, we first use heuristics to
align the datasets and pre-train over it. We then introduce
two models (i) UA-VMET + FA where the initial alignment
is kept fixed (ii) UA-VMET + IA where the alignment is
iteratively updated. Here, UA denotes unaligned setting, FA
denotes fixed alignment and IA denotes iterative alignment.

For semi-supervised setting, we first pre-trained on the
available paired data. We call this model SS-VMET. Fol-
lowing the previous case, we again introduce two models
(i) SS-VMET + FA and (ii) SS-VMET + IA denoting the
fixed and iterative alignment variants. Here, SS denotes the
semi-supervised setting.

For both fully unaligned and semi-supervised setting, we
additionally consider a fixed alignment variant where the
initial alignment is provided by CLIP [34]. We note that
CLIP is already trained on very large corpus defeating the
purpose of UVTP, but the provided alignment serves as an
upper-bound i.e. the best achievable performance with state-
of-art retrieval system. To retrieve videos using CLIP, we
simply use the second-frame of the video as the candidate
(among the four uniformly sampled frames). We refer to
these baselines as UA-VMET + CFA and SS-VMET + CFA
respectively. For the latter, CLIP is used on only the 90%
unpaired data with 10% ground-truth data intact. Here, CFA
denotes CLIP with fixed alignment.

Finally, we also provide a fully-supervised model FS-
VMET. As such, the overarching goal of UVTP task is to
bridge the gap between NP-VMET and FS-VMET.

We also compare with other video-text models such
FROZEN [4], ALPRO [23], All-In-One [48].

Metrics. We use standard metrics for downstream
datasets such as Acc@1 for MSRVTT-QA, Recall@X for
Retrieval on MSRVTT and DiDeMo. For COIN, we
use FrameAcc@1 for frame-wise classification and for
CrossTask we use Recall for the action segmentation.

We also consider CLIP-Score [12] as an intermediate
metric which can be directly computed using the pre-trained
model over the unaligned training dataset. To compute
this, we use the pre-trained model to perform an alignment
and then evaluate the CLIP-similarity score between the re-
trieved sentence and the image/video (for videos we con-
sider second frame). It should be noted that (i) A higher
CLIP-Score doesn’t automatically lead to higher down-
stream performance, particularly for retrieval benchmarks.
(ii) CLIP-Score is only used as a metric is not a part of the
pre-training process such as early-stopping or any learning
rate schedule.

Implementation Details. We follow similar hyper-
parameters as in METER [10]. METER by default uses
a batch size of 4096, due to resource constraints of train-
ing on videos, we instead use a batch size of 1024, but
we keep the number steps to be 100k for pre-training. We
use AdamW [28] with differential learning rates for the co-
attention layers and unimodal layers with 1e=* and 1e = re-
spectively during pre-training. We use deepspeed [36] and
use “DeepSpeed ZeRO Stage 2 with 16-bit precision. For
both cases, the initial 10% of the training is warm-up fol-
lowed by a linear decay. We use 224 x 224 as the image
dimension for pre-training in all cases and don’t use any
other augmentation. For visual backbone, we use ViT-B/32
weights trained on Imagenet [7] unless otherwise specified.

During pre-training, for each batch we perform MLM,
ITM and ITC. For MLM we use mask ratio of 15%, for ITM
we compare each image/video with 15 other negatives, for
ITC we consider the entire batch of 1024 instances. To cre-
ate a particular batch, we randomly sample an image/video
instance and then if it contains more than one corresponding
text, we select one at random.

To obtain the heuristic alignment in the fully-unaligned
setting, we apply VinVL object detector [56] on 4 uniformly
sampled frames. We then create an “object-string” by con-
catenating the unique objects in their order of appearance.
We then use Sentence-Bert [38] model (all-mpnet-base-v2
model [42]) to obtain the closest text-match for each in-
stance of image/video.

In the semi-supervised setting, we first pre-train on the
X% of the aligned dataset. Different from usual pre-
training scheme where we train for 100k steps, we instead
train for 40 epochs which is roughly equivalent to 30k steps.
Other hyper-parameters such as learning rate schedules, and
batch size are kept the same.



AD CS QA-Acc Ri@]1 RiI@5 rRi@10 i2t@l1 i2t@5 i2t@10

NP-VMET 0.00 39.35 11.70 3140 43.00 1540 39.00 51.00
UA-VMET + FA 0.00 17.23 40.10 1220 33.60 4510 17.77 41.12 5240
UA-VMET + 1A 0.00 221 40.40 14.82 36.55 52770 18.00 4230  55.60
SS-VMET 0.10 239 39.90 14.12 3458  46.55 17.50 42.01  53.10
SS-VMET + FA 0.10 24.48  40.01 14.28 35,56 4857 17.89 4283  53.31
SS-VMET + 1A 0.10 25.2 41.10 15.78 3995 5191 19.90 4330 54.70
UA-VMET + CFA 0.00 33.31 40.50 1720 4230 5470 2170 4530  55.60
SS-VMET + CFA  0.10 3298  41.83 20.10 4890  58.10 2477 46.71  58.19
FS-VMET 1.00  29.93 42.50 2720 51.20 6430 2650 50.70 @ 62.20
FROZEN [4] 1.00 - - 31 59.5 70.5 - - -

ALPRO [23] 1.00 - 42.1 33.9 60.7 73.2 - - -

All-In-One [48] 1.00 - 443 344 65.4 75.8 - - -

Table 2. Results on Shuffled Dataset. AD: Amount of Aligned Data, CS: CLIP-Score, QA-Acc: Accuracy@1 on MSRVTT-QA, t2i@X:
Text-to-Video Retrieval Recall on MSRVTT, i2t@X: Video-to-Text Retrieval Recall on MSRVTT. See Section 4.2 for model information.

Given the trained model on initial paired data (My, in
Section 3.3), we perform Iterative Alignment by
training for additional 10 epochs, but re-use the same hyper-
parameters as for pre-training. In the semi-supervised set-
ting, we re-use the existing paired data along with the newly
aligned data at each iteration. We set N such that it is ap-
proximately 20% of the epoch. For batch size of 1024, and
total of 6 M images/videos, we set N = 1200.

4.3. Results and Discussions

In Table 2 we report the results of fully unaligned
and semi-supervised setting by pre-training on the shuf-
fled dataset. The fine-tuning datasets are based on video-
question answering on MSRVTT-QA [49] and video-
retrieval on MSRVTT [51].

Fully unaligned results on Shuffled Dataset. We first
observe that for both fixed alignment (UA-VMET + FA)
and iterative alignment (UA-VMET + [A), the performance
on both QA and Retrieval task improves compared to no
pre-training setup (NP-VMET). We also note a stark im-
provement in CLIP-Score for the iterative alignment case
over 5 points compared to fixed alignment; similar improve-
ments are reflected in the corresponding downstream tasks.
We attribute this drastic improvement to the fact that the
initial alignment which was based on heuristic was poor.
The above results highlight two things (i) additional un-
aligned data always helps compared to performing no pre-
training (ii) iterative alignment significantly helps for fully
unaligned setting since the initial alignment was based on
naive heuristics.

Semi-Supervised results on Shuffled Dataset. For the
semi-supervised setting we compare three models. We find
that even training on just 10% of the ground-truth data

(SS-VMET) can be very helpful in improving the down-
stream performance. Further, the obtained CLIP-Score of
this model already surpasses UA-VMET model suggesting
the importance of good quality paired data. For the next
two models, we start from the trained SS-VMET model.
In the fixed alignment case (SS-VMET + FA), we perform
the alignment on the remaining 90% of the data only once
and pre-train over the existing 10% ground-truth and 90%
aligned data. In the iterative alignment case (SS-VMET +
IA), the 10% ground-truth data is kept as is, but remaining
90% alignment is updated. Comparing the two cases, we
find the relative improvement of the CLIP-Score to be small
but significant and consistent, which is also found in down-
stream tasks. We conclude that (i) both fixed and iterative
alignment help which is expected since we are again train-
ing on additional data (ii) the relative improvement of per-
forming iterative alignment over the semi-supervised case
to be smaller compared to fully unaligned case, likely be-
cause the initial alignment was significantly stronger (iii)
fixed alignment on semi-supervised performs worse than it-
erative alignment in unaligned case suggesting the impor-
tance of updating the alignment.

CLIP-Aligned baselines for Shuffled Dataset. We re-
port UA-VMET + CFA and SS-VMET + CFA, two strong
baselines where the alignment on the unpaired data is ob-
tained from CLIP [34] model. Recall that our model VMET
is kept as previous models with the visual backbone ini-
tialized from ViT trained on ImageNet [7]. We find that
directly using CLIP alignment far outperforms SS-VMET
+ IA. This is expected because the quality of retrieved ex-
amples from CLIP model is significantly better than that
VMET which is trained on a smaller set.

Comparison to fully-aligned on Shuffled Dataset.



%AD CS  QA-Acc ti@] 2i@5 2i@10 i2t@1 i2t@5 i2t@10
NP-VMET 0.00 39.35 11.70 3140 43.00 1540 39.00 51.00
UA-VMET + FA 0.00 1579  39.52 11.71  31.26  43.19 16.81 4091 5240
UA-VMET +IA 0.00 18.68  40.37 13.16 3530 5036 17.05 4292  53.15
SS-VMET + FA 0.10 239 39.90 14.12 3458 4655 1750 42.01  53.10
SS-VMET +IA 0.10  25.1 41.05 1590 40.10 51.60 21.05 4450  55.10
UA-VMET + CFA  0.00 3527  41.59 18.50 46.71 5893 2253 4541  57.64

Table 3. Results on Bookcorpus Dataset. AD: Amount of Aligned Data, CS: CLIP-Score, QA-Acc: Accuracy@1 on MSRVTT-QA,
21@X: Text-to-Video Retrieval Recall on MSRVTT, i2t@X: Video-to-Text Retrieval Recall on MSRVTT. See Section 4.2 for model

information.
Didemo COIN CrossTask

Ri@1 2i@5 t2i@10 Frame Acc Recall
NP-VMET 7.61 24.79 37.84 55.21 32.69
SS-VMET 28.10 55.32  65.49 55.83 34.54
SS-VMET +1IA 30.71 57.12  69.74 57.73 35.65
FS-VMET 3510 6572  75.93 60.15 37.28
ALPRO 3590 67.50 78.80 - -
VideoClip - - 68.70 47.30

Table 4. Results on DiDeMo, COIN and CrossTask.

While using additional unaligned data in both semi-
supervised and fully unaligned setting is helpful and is fur-
ther improved with ITterative Alignment, there is a
large gap with the fully aligned setting (FS-VMET). The
gap is particularly large for retrieval benchmark where bet-
ter quality paired data is quintessential for training.

Comparison to VLP Models on Shuffled Dataset. We
compare our fully supervised model (FS-VMET) with other
baselines such as FROZEN [4], ALPRO [23] and All-In-
One [48]. Our model obtains slightly higher performance
on QA, but lower performance on retrieval. We attribute
this gap to the architectural difference such as our use space-
time encoders used in FROZEN and ALPRO.

Results on BookCorpus Dataset. In Table 3 we com-
pare our model VMET pre-trained using images and videos
from Shuffled Dataset but the text used is instead obtained
from BookCorpus [59]. This a significantly challenging
as well as realistic setting where both vision corpus and
text corpus are different. We note very similar trends as
with Shuffled Dataset with Iterative Alignment improving
over Fixed Alignment in both fully-unaligned and semi-
supervised cases. The consistent trends highlights why us-
ing additional data even if the corpora are unaligned can
be useful for pre-training. Interestingly, we find the raw
CLIP-Score as well as downstream performance for fully
unaligned setting (UA-VMET + [A) worse than in Shuf-
fled Dataset but improved result for semi-supervised set-

ting (SS-VMET + IA). We also report results where our
model VMET is directly trained on the fixed alignment pro-
vided by CLIP (UA-VMET + CFA). Similar to previous
case, model trained on CLIP alignment outperforms semi-
supervised models.

Additional Down-stream Datasets In Table 4 we re-
port results on three downstream tasks namely Didemo [2],
COIN [45] and CrossTask [60]. We compare to two base-
lines namely ALPRO [23] and VideoClip [50]. We note
that a fair comparison with VideoClip is expensive since
it is trained on a large HowTo100M [32] dataset. Further,
HowTo100M, COIN and CrossTask lie in the instructional
videos domain which could provide the model with unfair
advantage. We note consistent improvements in the semi-
supervised setting suggesting the gains observed in the pre-
training process are genearlizable to a number of video-
language downstream tasks.

Visualizations. We provide visualizations for the re-
trieved examples during both fixed and iterative alignment.
We also provide visualizations on the down-stream tasks in
the supplementary material.

5. Conclusion

In this work, we explore the task of Unaligned Video-
Text Pre-Training (UVTP) which involves leveraging large
amounts of unpaired video and text data to pre-train video-
text models and thereby improve downstream performance.
We consider two cases: a fully unaligned setup where we
don’t have access to any paired data and a semi-supervised
setup where we have access to limited paired data. We ad-
dress these setup by aligning the two modalities via object
tags and pre-training a retrieval system. We further show
that resulting pre-trained models can be utilized to itera-
tively refine the alignment between the two modalities. We
evaluate our method in both synthetic setup where align-
ment is artificially removed as well as in realistic setup
where the video and text corpora are distinct, and show the
benefits of using unaligned data.



Appendix
The supplementary section contains additional details:

1. Model specification such as model hyper-parameters
(Section A).

2. Dataset Information and BookCorpus Processing (Sec-
tion B)

3. Visualizations for the retrieved data (Section C)

4. Additional Ablative study for semi-supervised setting
with different amounts of data (Section D)

A. Model Implementation Details

As noted before, our model is based on METER imple-
mentation [10]. We report the hyper-parameters used for
pre-training in our work in Table 5. This is the default set
of hyper-parameters. We train our models on single node
with 8 x A100 GPUs which accommodates 40GB size. To
optimize for efficiency, we utilize DeepSpeed [36] for pre-
training, specifically “DeepSpeed ZeRO Stage 2 setting
which saves us lot of GPU memory (~ 30%).

We pre-train our models for 100k steps for completely
aligned as well as fully unaligned settings. For Iterative
Alignment part, we train for 10 epochs which is roughly
equivalent to 100k steps. For semi-supervised setting, we
constrain to max of 40 epochs or 100k steps whichever is
earlier to avoid over-fitting on small datasets.

We use three pre-training losses namely, masekd lan-
guage modeling (MLM), image-text matching (ITM) and
image-text contrastive loss (ITC). MLM remains identical
to METER implementation with the mask ratio at 15%. For
ITM, we compare the positive image-text pair with 15 other
image-text pairs. To create such pairs, we randomly sam-
ple 15 other text from the dataset. For ITC, we use the
contrastive loss on the entire mini-batch. We use the con-
trastive loss implementation provided in CLIP [15] which
introduces a scaling parameter.

B. Dataset Information

We note the pre-training dataset sizes in Table 6. For
both images and videos, we resize with shorter side to 256
and during training time use center crop of 224 x 224. For
videos, we encode each video at 30 fps with CRF value of
23 to make the video storage manageable and not be a bot-
tleneck during data-loading.

Shuffled Dataset. For shuffled dataset, we simply col-
late images and videos from the above pre-training datasets
and the texts but remove the correspondence. Since we rely
on KNN search (top-50) to obtain closest correspondence
between the image/video and the text it is necessary to re-
move duplicates. Otherwise, the top-50 matches for an im-
age/video could contain multiple texts which are essentially

Vision-Backbone ViT-B/32
Language-Backbone Roberta-Base
Additional Vision Layers 2L, 12H
Effective Batch Size 1024
TopLR le™*
Bottom LR le™d
Warmup steps 10k
Max Steps 100k
LR Schedule Poly Decay with Linear Warmup
Precision FP16 (DeepSpeed stage 2)
Image Dim 224 x 224
MLM Mask Ratio 15%
ITM # comparisons 15 negatives
ITC # comparisons 1024

Table 5. Model Hyper-parameters for usual pre-training. L, H
denote number of layers and heads in the multi-head attention.
MLM, ITM, ITC denote the three pre-training losses.

COCO VG SBU CC3M WV2M

# Images 113k 108k 875k 2.8M 2.4M
# Paired Texts 565k 5.5M 875k 2.8M 2.4M
# Texts 565k 55M 1M 3.3M 2.5M

Table 6. Number of Texts denote the total number of annotations
(image/video link and text) provided in the dataset. However, not
all images/videos are available. We denote the number of im-
ages/videos we could download and use for pre-training in the first
row, and the corresponding paired texts in the second row.

the same. For shuffled dataset, we simply remove obvious
duplicate i.e. same lower case after removing white-spaces.
This brings the total number of text from 12M to 9M texts.
BookCorpus Dataset For bookcorpus, simply reading
all the sentences as separate text provides us with approxi-
mately 86 M texts. Unlike the Shuffled Dataset case, many
of the sentences from the BookCorpus dataset have (i)
proper nouns such as names of person like “Charlie” (ii)
sentences with no occurrence of objects or actions (iii) non-
visual or abstract verbs such as “envy”. To save computa-
tion time in the KNN search, we pre-process the dataset and
aim to have similar number of texts as in Shuffled Dataset.
We use Spacy [13] to first obtain lemmatized verbs and
object names from each sentence, and remove all sentences
where no objects other than “person” are found. We fur-
ther replace the names of people by using NER-tagging to
obtain “PER” tokens and replace them with a phrase “per-

Lt}

son”. Finally, we filter out sentences which only contain
non-visual verbs such as “belong”, “possess”, “know”, “re-
alize”. These are also known as “Stative Verbs”. At the
end of the filtering process, we are left with around 300/

texts. We then prune out close duplicate sentences, which
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Figure 4. Top10 Retrieved Texts for given videos from WebVid-2M for fully unaligned case. Object String denotes the unique objects
found in the video in order of appearance. GT Caption denote the original caption for the video. Finally, “trank0-9” denote the top10 text
retrievals for the video. Visible Faces are blurred.
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Taiping, malaysia - 17 october 2017: walking along malaysia traditional oriental
shop with five foot sidewalk.

Ho chi minh city, vietnam 2016: overview the center of ho chi minh city from sai
gon river at night very beautiful . ho chi minh city is the biggest city in Vietnam.
Ho chi minh city, Vietnam - 13 feb, 2018: ben binh dong (binh dong harbour) in
lunar new year with flower boats along side the river, sai gon, Vietnam.

Bangkok - october 10,2014: congestion on the road on rush hour time in
Thailand.

New york city, new york - october 7: slow moving traffic in downtown
establishing of new york city, new york on october 7, 2017.

Hanoi, vietnam, january 2020: city roundtrip in a open bus

Figure 5. Top10 Retrieved Texts for given videos from WebVid-2M for semi-supervised setting (10% semi-supervised). GT Caption refers
to the original caption. Initial Caption refers to the Top-1 caption after pre-training on 10% aligned data. Finally, “trank0-9” denote the
Top10 retrieved texts at the end of Iterative Alignment. Visible faces are blurred.

we define as when the order of the lemmatized objects and
actions are exactly the same. After such filtering, we are
left around 12M captions which we use for all bookcorpus
related training.

C. Visualizations

We visualize the retrieval outputs for fully unaligned
case in Figure 4. Given a video, we first obtain an Ob-
ject String. We use this Object String as a sentence and use
Sentence-Bert [38] to retrieve Top-10 text from the Shuf-
fled Dataset. As expected, given that this a heuristic the
retrieved texts are not close to the Ground-Truth caption.
For instance, the text matches with “manicure fingers” due
to “finger” object appearing in the original video.

In Figure 5, we visualize the retrieval results for semi-
supervised case. Given some aligned video-text data (10%
of Shuffled Dataset in this case), we first pre-train VMET
on this data using MLM, ITM and ITC. Then, we use ITC

head of this model to perform retrieval. The top-1 retrieval
is denoted by “Initial Caption”. While the Initial Caption
is not very close to the Ground-Truth caption, we still find
some relevance. For instance, in the left case, it was able
to relate to the concept of “woman” and “working”. Sim-
ilarly, in second case, it found “sidewalk”. At then end of
pre-training via Iterative Alignment the retrievals are signif-
icantly improved.

D. Ablative Study semi-supervised setting

Ablation on Aligned Data. In Table 7, we provide
results of pre-training in the semi-supervised setting with
varying amounts of aligned data. For pre-training we use
the Shuffled Dataset, and for fine-tuning we use MSRVTT-
QA with QA-Acc@1 as our metric. In each case, we first
train VMET on the amount of aligned data available. In
second column (FT), we directly fine-tune the pre-trained
model. In the third and fourth column, we use the pre-



AD | FT FA+FT IA+FT
0.00 | 39.35 - -

0.01 | 36.13 36.92 36.91
0.05 | 38.59 39.94 40.72
0.10 | 39.90  40.01 41.10
0.25 | 40.53  41.32 41.64
0.50 | 40.56  41.51 41.91
0.75 | 4122  41.82 41.94
090 | 42.04  42.10 42.14
1.00 | 42.50  42.50 42.50

Table 7. Ablative study by pre-training VMET on different
amounts of Aligned Data available in Shuffled Dataset. The down-
stream task is MSRVTT-QA and the metric is Acc@ 1. Models are
first pre-trained on the available aligned data. FT: Directly fine-
tune pre-trained model. FA + FT: Apply fixed alignment on the
entire Shuffled Dataset, and then fine-tune. IA+FT: Apply itera-
tive alignment then fine-tune.

= Fixed Alignment = lterative Alignment

0.450
0.425
0.400
0.375

0.350

Epoch
SentenceBert Score

Figure 6. Sentence-Bert Matching Score between ground-truth
and top-1 prediction. We use the Shuffled Dataset and the 10%
semi-supervised setting.

trained model to obtain either a fixed alignment (FA + FT)
or Iterative Alignment (IA+FT). The first row denotes no
pre-training case, hence we report only fine-tuning results.
The last row denotes fully aligned case. Since we have the
entire alignment, all three columns are exactly the same.

We observe that in the low aligned data regime, pre-
training leads to worse performance than not pre-training.
We attribute this to over-fitting of the model to the small
amount of data. In the higher aligned data regime, we
find additional aligned data leads to improvement although
the improvement margins are lower because the additional
amount of data for alignment used is small.

Ablation of Fixed vs Iterative Alignment. In Figure
6, we plot the Sentence-Bert matching score between the
ground-truth matching text and the top-1 prediction of the
model. We note that we have access to the ground-truth

since we are working on Shuffled Dataset, thus the same
metric cannot be plotted for BookCorpus dataset. We sam-
ple data around 20k images/videos for every 0.25 of an
epoch. As can be observed, our Iterative Alignment im-
proves the SentenceBert score compared to the Fixed Align-
ment setting.
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