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Abstract

The aim of the project is to train a physics based simula-
tor of the human legs to run on a simulated environment
with obstacles. We have explored how successful var-
ious reinforcement learning methods work on the this
problem (NIPS 2017 Learning to Run Challenge). We
have been able to train a model which allows the simu-
lator to achieve a reward very close to that obtained by
the top performers in the challenge, but is able to walk
further than some of them.

Introduction
The goal is to develop a controller to enable a
physiologically-based human model to navigate a complex
obstacle course (obstacles include external obstacles like
steps, or a slippery floor, along with internal obstacles like
muscle weakness or motor noise) as quickly as possible. The
performance score is based on the distance traveled through
the obstacle course in a set amount of time. The task is to
build a function f which takes the current state observation
(a 41 dimensional vector) and returns the muscle excitations
action (18 dimensional vector) in a way that maximizes the
reward (EPFL ) (Mohanty 2017).

Environment
The agent is a musculoskeletal model that includes body
segments for each leg, a pelvis segment, and a single seg-
ment to represent the upper half of the body (trunk, head,
arms). The segments are connected with joints (e.g., knee
and hip) and the motion of these joints is controlled by the
excitation of muscles. The muscles in the model have com-
plex paths (e.g., muscles can cross more than one joint and
there are redundant muscles). The muscle actuators them-
selves are also highly nonlinear. For example, there is a first
order differential equation that relates electrical signal the
nervous system sends to a muscle (the excitation) to the acti-
vation of a muscle (which describes how much force a mus-
cle will actually generate given the muscle’s current force-
generating capacity). Given the musculoskeletal structure of
bones, joint, and muscles, at each step of the simulation (cor-
responding to 0.01 seconds), the engine:
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• computes activations of muscles from the excitations vec-
tor provided to the step() function,

• actuates muscles according to these activations,

• computes torques generated due to muscle activations,

• computes forces caused by contacting the ground,

• computes velocities and positions of joints and bodies,

• generates a new state based on forces, velocities, and po-
sitions of joints.

Reward
The trial ends either if the pelvis of the model goes below
0.65 meters or if the model reaches 1000 iterations (corre-
sponding to 10 seconds in the virtual environment). The total
reward is the position of the pelvis on the x axis after the last
iteration minus a penalty for using ligament forces ( Liga-
ments are tissues which prevent your joints from bending
too much - overusing these tissues leads to injuries, so we
want to avoid it). The penalty in the total reward is equal
to the sum of forces generated by ligaments over the trial,
divided by 10,000,000.

Observations and Actions
The observation contains 41 values:

• position of the pelvis (rotation, x, y)

• velocity of the pelvis (rotation, x, y)

• rotation of each ankle, knee and hip (6 values)

• angular velocity of each ankle, knee and hip (6 values)

• position of the center of mass (2 values)

• velocity of the center of mass (2 values)

• positions (x, y) of head, pelvis, torso, left and right toes,
left and right talus (14 values)

• strength of left and right psoas: 1 for difficulty < 2, other-
wise a random normal variable with mean 1 and standard
deviation 0.1 fixed for the entire simulation

• next obstacle: x distance from the pelvis, y position of the
center w.r.t the the ground, radius.

In each action, there are 18 muscles which are actuated (9
per leg).



Environment Difficulty

A parameter controls the obstacle difficulty in the environ-
ment and can be one of the following:

• 0 : corresponding to no obstacles

• 1 : corresponding to 3 randomly positioned obstacles
fixed on ground

• 2 : corresponding to 3 randomly positioned obstacles
fixed on ground and strength of the psoas muscles (the
muscles that help bend the hip joint in the model) varies
as z ∗ 100%, where z is a normal variable with the mean
1 and the standard deviation 0.1

The evaluation of the challenge was done on difficulty level
2 of the environment.

Approach
Many existing methods of reinforcement learning have
treated tasks in a discrete low dimensional state space. How-
ever, controlling humanoid smooth simulators requires a
continuous high-dimensional state space. To treat this issue
of having an infinitely big state space, we ruled out using
value function learning methods like Q-learning, etc. Instead
we focused on policy search methods and intended to try
out various different approaches. Further to learning in class
about policy gradients, we explored utilizing a framework
similar to REINFORCE for the case of continuous action
spaces and we took into consideration Deterministic Policy
Gradient based methods after having read several papers like
Continuous control with deep reinforcement learning . We
have also explored various other techniques like Trust Re-
gion Policy Optimization and Evolutionary strategies.

Deep Deterministic Policy Gradient
A parametrized policy is advantageous for control because it
allows for learning in continuous actions spaces (Ramstedt
2016). DDPG (Lillicrap et al. 2015) is an actor-critic
policy gradient algorithm involving a policy network π(s|ξ)
with parameters ξ in addition to the action-value network
Q(s, a|θ) with parameters θ. The training targets for Q are
computed as yj = rj + γQ(sj+1, π(sj+1|ξ

′
)|θ′). Using the

mean squared error, we derive the cost function for Q:

Cθ′ξ′ (θ) =
1

m

∑
j

(rj + γQ(sj+1, π(sj+1|ξ
′
)|θ
′
)

−Q(sj , π(sj |ξ)|θ))2

As the targets depend on the explicit policy network, we
also need the target policy parameters ξ

′
= LP (ξ). Here,

LP will be an exponential moving average with update rule
ξ
′ ← τξ + (1τ)ξ

′
and θ

′ ← τθ + (1τ)θ
′
. The pol-

icy is trained via policy gradient:∇ξQ(sj , π(sj |ξ)|θ) =
∇aQ(sj , π(sj |ξ)|θ).∇ξπ(sj |ξ). That is, Q is the cost func-
tion for π : C(ξ|θ) = −Q(sj , π(sj |ξ)|θ)

Figure 1: Block diagram actor-critic for DDPG (Hafner )

As actions are continuous, correlated Gaussian noise
Mt is added to the actions to ensure exploration. More
specifically,Mt+1 ← vMt+N(0, σ)), whereN(0, σ) a nor-
mal distributed random variable and v a hyper parameter
controlling the frequency of the noise. This off-policy ap-
proach is possible because the algorithm does not learn on
trajectories but only on isolated transitions.

Algorithm for DDPG:

(Plappert et al. 2017) shows that adding noise to the weights
of the actor-critic leads to faster convergence. Hence we



have used parameter noise in the model we have imple-
mented.

Manual muscle activation tuning
Our starting attempt at the challenge was to try to make the
body move 2 or 3 steps and try to stand in a stable manner.
We had initially planned to achieve this and then build up
from these muscle activations using evolutionary methods.
However, even on repeated trail-error by varying the muscle
activations we were unable to make the body move 3 steps.
Since muscle activations need to be provided to all 18 mus-
cles on every iteration, to ensure a 3 step movement, we were
not able to manually tune the weights and get any significant
results.

Evolutionary Strategies
On manually tuning the parameters of the muscle activations
to have a base model which walks atleast 2 steps or can stand
in a stable manner, we observed that the muscle activations
values for each muscle were very close to either 0 or 1 (inter-
mediate values were not helping much). So we decided to try
out an evolutionary policy search strategy. We took muscle
activations for continuous 10 iterations (i.e, 18 ∗ 10 = 180
values) and initialized them randomly with 0’s and 1’s. This
weight vector now corresponds to a run on the environment
for 10 iterations. We then performed evolutionary search for
these vectors using concepts of mutation and crossing over.
Initially several random vectors were created and evaluated:
a few of the good scoring ones were chosen to cross-over (a
new vector made using alternate bits from both). Occasion-
ally, a few vectors were mutated (a random variable for each
bit which which causes bits being flipped from 0 to 1 and
vice versa). This strategy did not provide very encouraging
results, even when we tried to move away from the binary
assumption on values. Since the state space is very large and
there is a strong dependence on the muscle activations in
adjacent iterations if the simulator is walking, evolutionary
genetic strategies did not work very well here.

Reward Shaping
The original reward provided by the simulator is the posi-
tion of the pelvis on the x axis after the last iteration mi-
nus a penalty for using ligament forces. We observed that
solely using this reward with DDPG does not give any sig-
nificant improvements. We tried incorporating a new reward
into our implementation and we also tested with several re-
wards available from reference implementations.

Potential Function and Reward Shaping
By definition a potential function F : S × A × S → R is
such that ∀s, s′ ∈ S, a ∈ A we have

F (s, a, s′) = γφ(s′)− φ(s)
We note that the actual reward function (given by the en-

vironment) depends on state and action. The two new re-
ward functions that we make are independent of the action
and depend only the state and hence the sum of the two
new rewards is a potential function. Therefore adding the

two reward functions to the original reward (R0) functions
gives a new reward function which we call (Rnew). Explic-
itly Rnew = R0 + F where F is a potential function. By
sufficiency theorem of potential function we claim that if π∗
is an optimal policy of the original MDP then the new MDP
which has Rnew as the reward function also shares π∗ as an
optimal policy. Hence it makes sense to change the rewards
suitably to get faster convergence as needed.

• To incorporate some observations we made, we modified
the reward several times and observed that using the
following reward with DDPG gave the best result:
A = |xpelvis − xhead|
B = 1(yhead > 1.2)

C =
xt−left+xt−right

2
D = 1(ypelvis > 0.75)
E = 1(yt−left > 0.2) ∗ yt−left
F = 1(yt−right > 0.2) ∗ yt−right

Reward2 = A+B + C +D − E − F

xpelvis : x coordinate of pelvis
ypelvis : y coordinate of pelvis
xhead : x coordinate of head
xhead : y coordinate of head
xt−left : x coordinate of left talus
yt−left : y coordinate of left talus
xt−right : x coordinate of right talus
yt−right : y coordinate of right talus

Here term A accounts for how far the lower body
moves with respect to the head of the body and this
movement must be rewarded otherwise the body will
keep standing vertically. Term B accounts for the head of
the body staying upright and not falling below a threshold
height, failing which the body becomes unstable and
hence a penalty should be imposed. Term C is to ensure
that on an average the feet of the body are moving for-
ward and hence the average x-coordinate of the two talus
(lower feet) is added as reward. Term D accounts for the
pelvis(hip joint) height and not falling below a threshold
height, failing which the body becomes unstable and
hence a penalty should be imposed. To ensure steps taken
are stable, we needed to ensure that once the feet was
lifted off ground, some term penalizes the height of the
foot and forces it to go back to the ground. Term E and
F account for the fact that they penalize the height of the
left and right talus above the ground only when they have
been lifted off-ground (i.e, more than a certain threshold)
respectively.

• The obstacle is in the shape of a sphere with its x-
coordinate, y-coordinate and radius being observed in the
observations. To incorporate obstacle specific reward into
the model from some references, we used the following
reward.
xobs−start = xobstacle − rostacle
xobs−end = xobstacle + rostacle
yobs−end = yobstacle + rostacle



A = 1(xt−left > xobs−start − rostacle

2 )
B = 1(xt−left < xobs−end +

rostacle

2 )
C = 1(yt−left < yobs−end)

Reward =

{
−0.5 A ∩B ∩ C
0 otherwise

Above is repeated with right talus, left toe and right
toe and all these 4 rewards add together to constitute
Reward3. The idea behind this reward is that when the
body is very close to the obstacle i.e, the x co-ordinate
of the talus or the toe is withing a radius distance of the
start and end of the obstacle and the y coordinate of the
talus or toe is within the height of the obstacle, then we
need to penalize this configuration and hence have used a
penalty of -0.5 for this. Accumulating this reward for left
and right talus and toes, we get a good penalty when the
lower body becomes very close to the obstacle.

The final reward that was used to train the DDPG model
was Reward = Reward1 + Reward2 + Reward3 where
Reward1 is the defaut reward for the challenge

Layer Normalization
With layer normalization (Lei Ba, Kiros, and Hinton 2016)
(Mohandas ), the mean and variance is computed using all
of the summed inputs to the neurons in a layer for every sin-
gle training case. This removes the dependency on a mini-
batch size. Unlike batch normalization, the normalization
operation for layer norm is same for training and inference.
Layer norm acts on a per layer per sample basis, where the
mean and variance are calculated for a specific layer for a
specific training point. We use layer norm because we do
not want the inputs to saturate the non-linearities at the ex-
tremes. Layer norm is given by the operation below, where ε
is a small random noise (for stability). When we apply layer
norm on a layer, we are restricting the inputs to follow a
normal distribution, which ultimately will restrict the nets
ability to learn. In order to fix this, we multiply by a scale
parameter (α) and add a shift parameter (β). Both of these
parameters are trainable.

LN = α⊗ (xi − µL)√
σ2
L + ε

+ β

where µL and σL are the mean and variance calculated for a
specific layer for a specific training point.

Trust Region Policy Optimization (TRPO)
We tried to learn using TRPO (Schulman et al. 2015) but
unfortunately perhaps due to lesser iterations or some other
bug in the code, or its non-applicability to the new reward
function, we were unable to get the agent being able to move
more than two steps. In the literature, many others have been
able to get quite large rewards especially using ctmarko’s
Distributed TRPO (Yongliang 2017)

Implementation Details
• Manual Parameter Tuning: Implemented in python: sev-

eral attempts at manually controlling the body by explic-
itly providing the 18 muscle activation weights. We tried

several approaches where for first few iterations, a par-
ticular activations are provided, then after that they are
changed to some other value in order to lift one of the
legs and move forwards.

• Genetic Evolutionary Strategy: Implemented a class in
python importing the opensim-rl simulator environment
which has a data structure to store muscle activation
weights of all muscles for 10 iterations (i.e, 180 values)
and 2 functions for mutate and cross-over as described in
the theoretical section above in the report. Several differ-
ent populations(with different initializations of the data
structure are run) and the best ones are propagated to the
next iteration with mutations and cross-overs.

• Trust Region Policy Optimization : Taking reference from
the code available at (Coady 2017) , we ran the imple-
mentation on the environment. However, it did not give
significant results and due to lack of time were not able to
perform reward shaping and other techniques to improve
the score with this algorithm.

• Deep Deterministic Policy Gradient: We have used im-
plementation of DDPG algorithm from DDPG keras-RL
(Plappert 2016) implementation as the starting point and
then modified the code as per the simulator environment
by adding parameter weight noise, performing reward
shaping, etc. We also referred to an implementation of
the challenge available in Theano (Pavlov 2017) where
we experimented with the parameter and policy noise and
doing reward reshaping according to our problem. Both
the codes have been provided in the submission.
The actor critic network that we have used is as follows:
We concatenate the states and actions and feed them to
the actor module. The actor consists of 2 fully connected
dense layers each of size 64 units and each layer is fol-
lowed by performing layer normalization on it and then
adding some non-linearity by using a non-linearity layer
imported from lasagne. The outputs from the actor mod-
ule are fed to the critic module which consists of 2 fully
connected dense layers first one of size 64 and second
one of size 32 units and each layer is followed by per-
forming layer normalization on it and then adding some
non-linearity by using a non-linearity layer imported from
lasagne. The ouputs from actor to critic are also fed by a
full dense layer between them.

Results
On training the model by the DDPG algorithm we observed
that the score of the simulator increased on an average across
learning time, unlike the case of TRPO and evolutionary
strategies. As a result we ran the DDPG with layer normal-
ization and random noise weight perturbation to train for
400,000 iterations to train. We did not have access to any
GPU, and so the above training took around 4 days on a
8GB RAM CPU. The trend from the training of the model
was observed and is plotted below in Figure:2 which shows
the variation of the rewards obtained with respect to training
time. As can be observed in an average the original reward
obtained is between 6-8 with some rewards going as high
as 30. The reason of this large variations and spikes in the



graph is the fact that the training is being done with diffi-
culty level=2 where on each iteration, the muscle strength
of the psoas is set to a normal random variable (to account
for difference in muscle strengths for different individuals)
and hence depending on what value this variable takes, the
model can sometimes perform very well or worse. However
some of the best scores attained by the model have been in
the range of those of the leader board. One observation to
notice here is that, even for a score of 6 or 7, the body takes a
large number of steps (The original score contains a penalty
on account of high activations of ligaments). The task we
were aiming to achieve was to ensure that the body is able
to run continuously and keep on taking steps (and hence we
added our own rewards to the default reward) rather than
aiming to maximize the default reward. Thus we have been
able to accomplish the task of making the body simulator
run. We can work in the future to ensure less ligament wear
and tear happens by now trying to maximize the original re-
ward starting from this trained model and the default reward.

Figure 2: Plot of original reward function vs training iter-
ations for DDPG with layer normalization, noise perturbed
weights and modified reward function

Now to evaluate the significance of using the layer normal-
ization and a modified reward function, we tried modifying
the model and training under the same conditions. We com-
pare the original reward vs training iterations graphs for 3
models in Figure:3. The blue line represents the best work-
ing model with layer normalization, noise perturbed weights
and a modified reward function. The green line is for a
DDPG model similar to the model of the blue line but with
no layer normalization. The red line is for a DDPG model
which has layer normalization and noise perturbed weights
but only the default reward.
As can be observed from the graph, using layer normaliza-
tion has proven to be very useful and the lack of it is the
primary reason our agents were not working well initially.
Also using a modified reward helps the agent improve the
default reward as well as can be observed by comparing the

Figure 3: Plot of original reward function vs training iter-
ations for 3 DDPG models: one with layer normalization,
noise perturbed weights and modified reward function, one
with noise perturbed weights and modified reward function,
and one with layer normalization, noise perturbed weights
and default reward function

blue and red lines of the graphs. Because of these trends
in the graph, we decided to use a DDPG model with layer
normalization, noise perturbed weights and a modified
reward function as stated in theory above.

The below Figure:4 also plots the modified reward function
vs training iterations to compare the 2 DDPG models with
respect to importance of layer normalization. As can be ob-
served from the graphs, the model with layer normalization
has better modified reward function learning with the train-
ing iterations.

Figure 4: Plot of modified reward function vs training itera-
tions for 2 DDPG models: one with layer normalization and
the other with no layer normalization



The above is a series of snapshots of our agent running on
the simulator. As can be observed easily the agent is able
to walk and cover a fairly large distance during simulation.
This simulation is for different time instances of the same
episode of running the agent using the weights learned after
400,000 iterations

Conclusion
We have been able to make a decent successful attempt at the
NIPS 2017 Challenge as we have been able to train the body
to learn to walk on the ground even with obstacles for a fairly
large distance (on an average a reward of 20-25) which com-
pares significantly with the final leader board of the compe-
tition. There are several things we could have done but were
unable to due to paucity of time. Future work can involve ef-
fect of different types of parameter noise on the weight of the
DDPG algorithm, trying out policy optimization algorithms
(TRPO and PPO), exploring evolutionary strategies once the
above policy has been learn using DDPG, etc. Changing
the reward function by adding a better characterized obsta-
cle penalty reward may lead to further improvements on the
score. On a broader level, the progress from here can be used
as a starting point for bringing Deep Reinforcement Learn-
ing to solve problems in medicine and RL research in other
computationally complex environments, with stochasticity
and highly-dimensional action spaces.
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