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Introduction to Graph Convolutional Networks

CNN are extremely efficient architectures for image and audio
classification tasks.

But CNN donot directly generalize to irregular domains such as graph.

Want to generalize CNN to Graphs.

Non-trivial because the distances are non-euclidean.
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Extending Convolutional to Graphs

There are two main approaches

Spatial Approach :
Generalization of CNN in the spatial domain itself.

I Learning Convolutional Neural Networks for Graphs [ICML 2016].

Spectral Approach :
Using the frequency characterization of CNN and using that to
generalize to Graphical domain

I Spectral Networks and Deep Locally Connected Networks on Graphs
[Bruna et al. ICLR 2014].

I Convolutional Neural Networks on Graphs with Fast Localized Spectral
Filtering [Defferrard et al. NIPS 2016] (will be the main focus)

I Semi-Supervised Classification with Graph Convolutional Networks
[Kipf et al. ICLR 2017]
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Limitations of Spatial Approach

Can’t exactly define a neighborhood because the distances are not
uniform.

Ordering of nodes is problem specific.

Hence for the remainder we discuss the Spectral Approach
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A Basic Formulation

Convolution in spectral (Fourier) domain is point wise multiplication.

Fourier Basis is defined as the eigen basis of the laplacian operator.

Can use Laplacian of a graph.
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Defining the Problem on Graphs

A feature description xi for every node i ; summarized in a NxD
feature matrix X (N : number of nodes, D : number of input
features)

Adjacency Matrix A.

Node level output Z (an NxF feature matrix, where F = number of
output features per node).

Every neural network can then be written as a non-linear function.

H(l+1) = f (H l ,A)
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Brief overview of Graph Laplacian

Let T denote the diagonal matrix with (v ,v)-th entry having value dv :
degree of vertex v . Define L-matrix as

L(u, v) =


dv if u = v

−1 if u and v are adjacent

0 otherwise

And the Laplacian of the graph as

L(u, v) =


1 if u = v

− 1√
dudv

if u and v are adjacent

0 otherwise
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Graph Laplacian (contd.)

L = T−1/2LT 1/2

With the convention T−1(v , v) = 0 for dv = 0.
When G is k-regular,

L = I − 1

k
A

For a general graph
L = I − T−1/2AT 1/2
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Spectral Networks and Deep Locally Connected Networks
on Graphs

Mentions the use of both spatial and spectral construction.

For the spectral part uses a spline and has k control points for it.

gθ(Λ) = Bθ

Here B is the cubic B-spline basis and θ is a vector of control points.

The datasets used (created) are quite interesting. Subsampled
MNIST and MNIST on sphere to show how spectral networks can be
used on graphs.
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Graph Fourier Transform

Laplcian of the graph is real symmetric positive semidefinite, and thus
can be written as

L = UΛUT

Here U = [u0....un−1] is the fourier basis and Λ = diag([λ0...λn−1])
are ordered real non-negative eigen values.

Graph Fourier Transform of a signal x is x̂ = UT x .
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Spectral filtering of graph signals

Defining convolution on graphs

x ∗G y = U((UT x)� (UT y))

Filtering by gθ

y = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UT x

A non-parametric filter (all parameters free) would be defined as

gθ(Λ) = diag(θ)
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Polynomial Parametrization

Problem with non-parametric filters is that not localized (we want
something like k-neighborhood) and therefore their learning
complexity becomes O(n). This can be overcomed with use of a
Polynomial filter

gθ(Λ) =
K−1∑
k=0

θkΛk

The advantage we gain here is that nodes which are at a distance
greater than K away from the node i , at which the filter is applied,
are not affected. Hence we have gained localization.
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Recursive formulation for fast filtering

Still cost to filter is high O(n2) because of multiplication with U
matrix.

Therefore use recurrence relation of chebyshev polynomial instead.

gθ(Λ) =
K−1∑
k=0

θkTK (Λ̃)

Here Λ̃ is scaled between [−1, 1].

This allows us to compute x̄k = TK L̃x . And Therefore

y = gθ(L)x = [x̄0... ¯xk−1]θ

The cost is now O(K |E |)
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Learning filters

Trivial to show that backprop calculation can be done efficiently.
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Graph Coarsening and Pooling

Require efficient mechanism for pooling. Graph clustering as such is
NP-hard and some approximations must be made.

The paper uses Graclus algorithm for coarsening, and uses an
intelligent way of rearranging the nodes [creating a balanced binary
tree from the remaining singleton and fake nodes] so that the pooling
now becomes equivalent to pooling a regular 1D signal.
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MNIST results

Achieves close to classical CNN accuracy.

Table: MNIST performance

accuracy loss
name

test train test train

98.87 99.62 1.02e+00 9.99e-01 cgconv cgconv fc softmax

98.00 99.26 6.52e-02 2.77e-02 cgconv softmax

96.75 96.78 1.12e+00 1.12e+00 fgconv fgconv fc softmax

95.91 95.50 1.44e-01 1.53e-01 fgconv softmax

97.66 97.79 1.09e+00 1.08e+00 sgconv sgconv fc softmax

96.95 97.27 1.03e-01 9.46e-02 sgconv softmax

92.18 92.47 3.14e-01 3.14e-01 softmax
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Accuracy and Loss Plots

Figure: Accuracy and Loss function plot
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Fast approximate convolutions on the graph

Layerwise propagation rule as

H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W (l))

Here Ã = A + IN the adjacency matrix with added self-loops. D̃ is the
degree matrix.

In the chebyshev approximation, limit to K = 1 and therefore the
layer-wise convolution operation is linear function of the laplacian.

Experimentally shows 2-3 layered GCN can effectively learn standard
graph problems. Specifically it does decently well in the unsupervised
case, and significantly good in the semi-supervised setting.
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Limitations

We would like to model a network which doesn’t require a rectangular
input size and therefore be able to accomodate superpixels. In theory
this should be possible, but there are a few points that we need to
keep in mind.

I Graph doesn’t have orientation. There is no sense of up, down, left or
right. The filters are rotationally invariant. This can be both
advantageous as well as disadvantageous depending on the set-up of
the problem. Spatial Transformer Networks learn the invariance to
rotation as well as generic warping. But there is always the problem of
’6’ and ’9’ because they are equivalent in modulo rotation.

I The filters are not directly transferable to another graph (because of
the graph laplacian).
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