Video Question Answering with Phrases via Semantic Roles

Abstract

Video Question Answering (VidQA) evaluation metrics have
been limited to a single-word answer or selecting a phrase
from a fixed set of phrases. These metrics limit the VidQA
models’ application scenario. In this work, we leverage se-
mantic roles derived from video descriptions to mask out
certain phrases, to introduce VidQAP which poses VidQA
as a fill-in-the-phrase task. To enable evaluation of answer
phrases, we compute the relative improvement of the pre-
dicted answer compared to an empty string. To reduce the
influence of language-bias in VidQA datasets, we retrieve
a videos having a different answer for the same question.
To facilitate research, we construct ActivityNet-SRL-QA and
Charades-SRL-QA and benchmark them by extending three
vision-language models. We perform extensive analysis and
ablative studies to guide future work.

1 Introduction

Given a video, Video Question Answering (VidQA) requires
a model to provide an answer to a video related question.
Existing works treat VidQA as an N-way (N ~1k) classifica-
tion task across a fixed set of phrases. Models trained under
such formulations are strictly restricted in their recall rate,
generalize poorly, and have severe limitations for end-user
applications.

In this work, we introduce Video Question Answering
with Phrases (VidQAP) which treats VidQA as a fill-in-the-
phrase task. Instead of a question, the input to VidQAP con-
sists of a query expression with a query-token. Then, given
a video, VidQAP requires replacing query-token with a se-
quence of generated words. To generate a query, we leverage
video descriptions and assign semantic roles to each phrase
in these descriptions. Replacing a particular semantic-role
with a query token produces a query-answer pair. We illus-
trate this in Figure 1 (details in Section 3.1).

While free-form answer generation is highly desirable,
evaluating them is non-trivial due to two main challenges.
First, existing language generation metrics like BLEU (Pa-
pineni et al. 2002) or BERTScore (Zhang et al. 2020) oper-
ate on sentences rather than phrases. When applied to short
phrases, in the absence of context, even close matches like
“A person” and “The man” would be falsely rejected due
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Video description: A man on top of a building throws a bowling ball towards the pins
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Q1: Who throws a bowling ball towards erf <Il -ARGO> throws aiboiwliingibafl -
the pins? itowards the pins.
Model’s Top Predictions: iModel’s generated answer: A man

istanding on a house

i Correct answer: A man on top of a
ibuilding

Correct Answer: A man on top of a i

building iQ5: A man on top of a building <Q-V> a
Ibowling ball towards the pins.

Q2: Does a man on top of a building iModel’s generated answer: throws

throw a bowling ball towards to pins? iCorrect answer: throws

Model’s Top Predictions: i

A: Yes B: No C: Maybe iQ6: A man on top of a building throws
1<Q-ARG1> towards the pins.

iModel’s generated answer: a ball

i Correct answer: a bowling ball

Q3: A man on top of a building throws a !

bowling ball towards the . !Q7: ‘A man on top of a building throws a
Model’s Top Predictions: !bowling ball <Q-ARG2>

A:field B:pins C:basket D: man !Model’s generated answer: towards some
Ibottles

! Correct answer: towards the pins
i

A: Aman B: A man under the tree
C: A person D: This boy

Correct Answer: Yes

Correct Answer: pins

(a) N-way Classification of Phrases ' (b) Free-form Answer Generation

Figure 1: Previous methods formulate VidQA as a N-way classi-
fication task. The questions are converted via question generation
tool (QI1, Q2) or masking-out strategy (Q3). However, such QA
has a theoretical recall upper bound when the correct answer is not
among the choice list. In comparison, we propose a free-form text
generation task which do not suffer such limitation (Q4-Q7)

to no n-gram overlap or poor contextual embeddings. Sec-
ond, natural language questions often have strong language
priors making it difficult to ascertain if the model retrieved
information from the video.

To propose a reasonable evaluation metric, we revisit our
fill-in-the-phrase formulation. Since we know where exactly
the generated answer fits in the original query, we can create
a complete sentence. With this key insight, we propose rela-
tive scoring: using the description as reference sentence, we



Dataset Source #Clips  Clip Duration(s) #QA-Pairs # QA /Clip  Task Type  Scripts Box QA Pair Creation
Movie-QA Movies 6771 202.7 6462 0.95 MC v X Human
Movie-FIB Movies 128,085 4.8 348,998 2.72 OE X X Automatic
VideoQA* Internet videos 18100 45 174,775 9.66 OE X X Automatic
MSVD-QA Internet videos 1,970 9.7 50,505 25.64 OE X X Automatic

MSR-VTT-QA Internet videos 10,000 14.8 243,680 24.37 OE X X Automatic
TGIF-QA Tumblr GIFs 62,846 3.1 139,414 2.22 OE+MC X X Human+Automatic
TVQA TV Show 21,793 76 152,545 7 MC v X Human
TVQA+ TV Show 4200 61.5 29,383 7 MC v v Human
ActivityNet-QA*  Internet videos 5800 180 58000 10 OE X X Human
ASRL-QA Internet videos 35805 36.2 162091 5.54 OE + Phrase X 4 Automatic
Charades-SRL-QA  Crowd-Sourced 9513 29.85 71735 7.54 OE + Phrase X X Automatic

Table 1: Comparison of Existing datasets for VidQA with our proposed ASRL-QA and Charades-SRL-QA. Here, OE = Open-Ended, MC =
Multiple Choice. “Scripts”: if answering questions requires access to scripts or subtitles. “Box”: if dataset provides bounding box annotations.

*: Includes Yes/No questions

compute the metrics once by replacing the query-token once
with the predicted answer phrase and once with an empty-
string. The model’s performance is measured by the relative
improvement from the predicted answer compared to the
empty string. In particular, substituting the answer phrase
in the query expression allows the computing the contextual
embeddings required by BERTScore.

To mitigate the language-bias issue, we emulate the pro-
cedure proposed by (Goyal et al. 2017) where for a given
question, another image (or video in our case) is retrieved
which has a different answer for the same question. To re-
trieve such a video, we use a contrastive sampling method
(Sadhu, Chen, and Nevatia 2020) over the dataset by com-
paring only the lemmatized nouns and verbs within the
SRLs. We then propose contrastive scoring to combine the
scores of the two answer phrases obtained from the con-
trastive samples (details on evaluation in Section 3.2).

To investigate VidQAP, we extend three vision-language
models namely, Bottom-Up-Top-Down (Anderson et al.
2018), VOGNet (Sadhu, Chen, and Nevatia 2020) and a
Multi-Modal Transformer by replacing their classification
heads with a Transformer (Vaswani et al. 2017) based lan-
guage decoder. To facilitate research on VidQAP we con-
struct two datasets ActivityNet-SRL-QA (ASRL-QA) and
Charades-SRL-QA and provide a thorough analysis of ex-
tended models to serve as a benchmark for future research
(details on model framework in Section 3.3 and dataset cre-
ation in Section 4.1).

Our experiments reveal that there exists a large disparity
in performance across semantic-roles (i.e. queries for some
roles can be answered very easily compared to other roles).
Moreover, certain roles hardly benefit from vision-language
models suggesting room for improvement. Finally, we inves-
tigate the effects of relative scoring and contrastive scoring
for VidQAP with respect to BertScore.

Our contributions in this work are two-fold: (i) we in-
troduce VidQAP and propose a systematic evaluation pro-
tocol to leverage state-of-art language generation metrics
and reduce language bias (ii) we provide extensive analysis
and contribute a benchmark on two datasets evaluated using
three vision-language models. We will release the dataset
and code upon publication.

2 Related Works

Question Answering in Images has received extensive at-
tention in part due to its end-user applicability. Key to
its success has been the availability of large-scale curated
datasets like VQA v2.0 (Goyal et al. 2017) for visual ques-
tion answering and GQA (Hudson and Manning 2019) for
relational reasoning. To address the strong language pri-
ors, the datasets are balanced by retrieving images which
given the same question lead to a different answer. How-
ever, these procedures cannot be extended for VidQA since
crowd-sourcing to retrieve videos is expensive and there ex-
ists no scene-graph annotations for videos. In this work, we
perform the retrieval using lemmatized nouns and verbs of
the semantic roles labels obtained from video descriptions
to balance the dataset.

Question Answering in Videos: has garnered less at-
tention compared to ImageQA. A major bottleneck is that
there is no principled approach to curating a VidQA dataset
which reflects the diversity observed in ImageQA datasets.
For instance, naively crowd-sourcing video datasets leads to
questions about color, number which is same as ImageQA
datasets and doesn’t reflect any spatial-temporal structure.
To address this issue, TGIF-QA (Jang et al. 2017) and
ActivityNet-QA (Yu et al. 2019) use a question-template to
enforce questions requiring spatio-temporal reasoning but
forgo the question diversity. An orthogonal approach is to
combine VidQA with movie scripts (Tapaswi et al. 2016) or
subtitles (Lei et al. 2018). However, this severely restricts the
domain of videos. Moreover, recent works have noted that
language-only baselines often outperform vision-language
baselines (Jasani, Girdhar, and Ramanan 2019; ning Yang
et al. 2020; Zellers et al. 2019).

Automatic Question Generation: Due to the above
limitations, the dominant approach to create large-scale
VidQA dataset has been automatic question generation from
existing video descriptions which can be easily crowd-
sourced. Our proposed formulation of using SRLs to gen-
erate query-expressions falls in this category. Prior works
include VideoQA (Zeng et al. 2017), MSR-VTT-QA and
MSVD-QA (Xu et al. 2017) which use a rule based question
generator (Heilman and Smith 2009) to convert descriptions
to questions and Movie-Fill-in-the-Blanks (Maharaj et al.



ARGO Vv ARG1 DIR
A person moves exercise equipment around in the office
Query-Expressions Answers
<Q-ARGO> moves exercise equipment in the office A person
A person <Q-V> exercise equipment in the office moves

A person moves <Q-ARG1> in the office exercise equipment

A person moves exercise equipment < > in the office

(a) Following SRLs are considered: ARGO , ARG1,ARG2,V, to generate
query-expressions and answers. Here, the phrase corresponding to the semantic-
role DIR is removed from both query-expressions and answers.

ARGO V. DIR MNR

A person climbs down with his hands folded

(b) Query-expressions would have less than 3 semantic-roles and hence ignored.

Figure 2: Ilustration of our query generation process. In (a) DIR
is ignored from both Query and Answers. In (b) the question is re-
moved from validation set since at most two arguments from con-
sidered set are present.

2017) which mask outs at most one word which could be
a noun, adjective or verb in a sentence. In comparison, our
method poses VidQAP as fill-in-blanks but with phrases, ex-
plicitly asks questions about actions, and the answer phrases
are not constrained to a fixed set. As a result of this increased
space of phrases, methods on existing datasets cannot be di-
rectly applied to VidQAP. To enable further research, we
contribute two datasets ASRL-QA and Charades-SRL-QA.
In Table 1 we compare these with existing VidQA datasets.
SRL in Vision: has been explored in the context of human
object interaction (Gupta and Malik 2015), situation recog-
nition (Yatskar, Zettlemoyer, and Farhadi 2016), and multi-
media extraction (Li et al. 2020). Most related to ours is the
usage of SRLs for grounding (Silberer and Pinkal 2018) in
images and videos (Sadhu, Chen, and Nevatia 2020). Our
work builds on (Sadhu, Chen, and Nevatia 2020) in using
SRLs on video descriptions, however, our focus is not on
grounding. Instead, we use SRLs primarily as a query gen-
eration tool and use the argument as a question directive.

3 Design Considerations for VidQAP

The VidQAP task is conceptually simple: given a video and
a query expression with a query-token, a model should out-
put an answer phrase that best replaces the query-token. This
leads to three main design considerations: (i) How to gener-
ate a query-expression from existing resources (Section 3.1)
(i) How to evaluate the answer phrases returned by a model
(Section 3.2) (iii) What modeling framework choices enable
VidQAP (Section 3.3).

3.1 Using SRLs to Generate Queries for VidQAP
We first briefly describe semantic-role labels (SRLs)'. Then
we detail how SRLs are used to create VidQAP queries.

"Detailed discussion is provided in supplementary. A demo is
available here: https://demo.allennlp.org/semantic-role-labeling

Query Generation Using SRLs: Semantic Role Labels
(SRLs) provide a high-level label to entities extracted from
a sentence in the form of who (ARG0), did what (V) to whom
(ARG1) (Strubell et al. 2018). Other roles such as to whom
/ using what (ARG2) and where (LOC) are also common.
As a pre-processing step, we assign SRLs to video descrip-
tions using a state-of-art SRL labeler (Shi and Lin 2019).
A particular description could consist of multiple verbs, in
which case, we consider each verb and its associated SRLs
independently. For a particular semantic-role, we substitute
the corresponding phrase with a query token to generate the
query expression. The replaced phrase is the corresponding
answer. Using this method we are able to generate multiple
queries from a single description. A complementary advan-
tage of using SRLs is that query phrases are centered around
“verb-phrases” which are relevant to the video contents.

Generating queries using every SRL is not beneficial as
some SRLs have more to do with the phrasing of the lan-
guage rather than the video. For instance, in the phrase
“Players are running around on the field”, if we mask out
the word “around” (DIR), it can be answered without look-
ing at the video. To address the above issue, we confine
our description phrases to a fixed set of semantic-roles
namely: ARGO, ARGl, V, ARG2, ARGM-LOC. Only
those phrases which belong to the above set of SRLs may ap-
pear in the query-expression or as an answer phrase. We fur-
ther remove phrases which have only two arguments as these
are too ambiguous to fill. Figure 2 illustrates these steps.

3.2 Evaluating Answer Phrases

A key challenge in VidQAP is the lack of any standard
protocol to evaluate free-form generated phrases. A sim-
ple way is to adopt metrics like BLEU (Papineni et al.
2002), ROUGE (Lin 2004), METEOR (Banerjee and Lavie
2005), and CIDER (Vedantam, Zitnick, and Parikh 2015)
which are already used for captioning in images and videos.
However, these metrics suffer from limited generalization:
BLEU, ROUGE, and CIDER require exact n-gram matches.
While this is fine for captioning where longer phrases aver-
age out errors, answers phrases are typically much smaller
than a complete sentence. This can lead to many correct an-
swers receiving very low score.

This issue is resolved to a certain extent for captioning
by learned metrics like BERTScore (Zhang et al. 2020)
which utilize contextual embeddings obtained from large
pretrained models like BERT (Devlin et al. 2019) and
RoBerta (Liu et al. 2019). However, answer phrases are usu-
ally short and don’t provide meaningful contextual embed-
dings. In the extreme case when the answer is a single word,
for instance when the query is about a Verb, these embed-
dings turn out to be very noisy leading to large number of
false-positives.

Relative Scoring: To enable usage of contextual em-
beddings, we propose evaluating the relative improvement
of the generated answer phrase compared to the ground-
truth phrase. We denote the input query expression as @,
the ground-truth answer is Ay ,and the predicted answer
is Apreq. Let Q(X) denote () with the question tokens re-
placed by X. Then for a given metric B, we compute the



Query Expression: A person <Q-V> exercise equipment.
Reference (Ground Truth):
Hypothesis (Prediction):
Baseline (Empty String):

A person moves exercise equipment.
A person lifts exercise equipment.
A person [l exercise equipment.

a =B(Ref, Base), B =B(Ref, Hyp), y=B(Ref, Ref)

[Relative Metric Score] B(Ref, Hyp) = 5%2

Figure 3: Illustration of the Relative Metric Computation.
“moves” is the ground-truth answer and “lifts” is a model’s predic-
tion. The Relative Metric compares the relative improvement from
using the model’s prediction compared to an empty string.

Answer: a dog Answer: a hair dryer

A person holding <Q-ARG1> in their hands

Figure 4: Nlustration of Contrastive Sampling Process. For the
same query-expression, we retrieve two videos with different an-
swers. The model should be able to answer both queries.

relative metric B, as (see Figure 3 for illustration)

Ref = Q(Agt) Hyp = Q(Apred) Base = Q(‘m) (1)
B(Ref, Hyp) — B(Ref, Base) @
B(Ref,Ref) — B(Ref, Base)

Note that B(Ref, Ref)=1 for BLEU, METEOR, ROUGE,
BERTScore but not for CIDEr.

We observe that Eqn 2 is very similar to the re-scaling pro-
posed in BERTScore. However, in BertScore re-scaling aims
at making the score more readable and doesn’t change the
relative ranking of the hypothesis. In our case, Eqn 2 plays
two roles: first, it allows computing the contextual embed-
dings because the answers are now embedded inside a com-
plete phrase, second while the ranking is not affected for a
particular query, the score would be different across queries
and hence affect the overall relative metric.

Contrastive Scoring: Visual Question Answering suffers
from heavy language priors, and as a result, it is often diffi-
cult to attribute whether the image or video played a role in
the success. For images, (Goyal et al. 2017) resolved this by
balancing the dataset where they crowd-sourced the task of
collecting an image that has a different answer for the same
question. However, such a crowd-sourcing method is diffi-
cult to extend to videos since searching for videos requires a
much longer time. This is further complicated by accepting
answer phrases compared to single word.

We simulate the balancing process using the contrastive
sampling method used in (Sadhu, Chen, and Nevatia 2020).
Specifically, for a given video-query-answer (V1,Q1, A1)
tuple we retrieve another video-query-answer (V5, Q2, As)

Br (Agta Apred) =

tuple which share the same semantic role structure as well
as lemmatized noun and verbs for the question, but a differ-
ent lemmatized noun for the answer. At test time, the model
evaluates the question separately, but the evaluation func-
tion requires both answers to be correct. Since our answers
comprise of phrases, the notion of correctness is not abso-
lute (unlike say accuracy metric). Thus, we put a threshold ¢
below which the answer is deemed incorrect.

Mathematically, let S;=B,(Ag:,, Apreq,) be the relative
score for sample ¢, and we are given sample j is a contrastive
example for sample . Then the contrastive score (C.S;) for
sample ¢ at a threshold 7o would be

CS; = max(S;1[S; > Tes * B(Ref;, Ref;)],0)  (3)

Here 1[] is the indicator variable which is 1 if the expres-
sion within brackets is True, otherwise 0. The max operator
ensures the scores don’t become negative. For our experi-
ments, we use T s=0 which requires that the answer for the
contrastive sample should be better than an empty string.

We further use the contrastive samples to compute a con-
sistency metric. For sample 4, the consistency Cons; for a
threshold T, is given by

C’onsi - ]l[(Sz - Tcons) * (Sj - Tcons) > O] (4)

In other words, Consistency requires the model to be ei-
ther correct or incorrect for both contrastive samples.

Combined Metric at a Glance: Given a metric B, for a
given sample ¢ and its contrastive sample j

1. Compute the relative metric (Eqn 2) for both ¢, j
2. Compute contrastive Score for the metric (Eqn 3)
3. Optionally compute Consistency for the metric (Eqn 4)

We use the prefix “R-” such as in R-B to denote both rel-
ative scoring and contrastive scoring is being computed. We
report Consistency for BertScore with 7,,,s=0.1

3.3 Model Framework

Models for VidQAP require a language encoder to encode
the question, a visual encoder to extract video features and a
decoder to generate a sequence of words.

Inputs include query expression {w}X ; (L is number of
words), video segment features for I} frames and option-
ally £ RCNN features for F; frames. In either case, frames
are sampled uniformly from the video segment time-span.
While the models differ in their encoding scheme, our lan-
guage decoder model (Transformer based) used to generate
the output answer phrase is kept same across all models.

Lang-QAP: is a language-only model and only uses the
query input. It uses Transformer based encoder to encode
the query into ¢ € RY*9, The decoder only uses last layer
output of the encoder (Figure5-(a)).

BUTD-QAP: Bottom-up-Top-Down (Anderson et al.
2018) is a popular approach for image question answering
as well as captioning. It first computes attention between the
question and the RCNN visual features to generate an at-
tended visual feature, which is then used with the question
to produce an output answer. Here, we replace the RCNN
features with the segment features (0 € RF1%4) We can also
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Figure 5: Schematic of the various models used to benchmark VidQAP. Input Query: “A person picks up <Q-ARG1>". Ground-Truth
Answer: “a pair of shoes”. (a) Lang-QAP is a language-only model which encodes the query input and passes to a decoder. (b) BUTD-QAP
uses the pooled feature representation from language encoder and attends over the visual features. (c) VOG-QAP uses an additional phrase
encoder and applies a Transformer over the multi-modal features (d) MTX-QAP consumes both the language and visual features with a

multi-modal transformer.

include RCNN features by projecting them to same dimen-
sion as segment features and then concatenate them along
the frame-axis (0 € RF1+F2+k)xd) For language features,
we use the [CLS] token representation obtained from the last
layer of the language encoder used in Lang-QAP. The final
output using the language and visual features is (1 € R?
passed to the decoder (Figure 5 (b)).

VOG-QAP: VOGNet (Sadhu, Chen, and Nevatia 2020)
has been proposed for grounding objects in videos given a
natural language query. We first derive per phrase encoding
which corresponds to a single SRL i.e. ¢ € R5*? (S is num-
ber of semantic roles) and concatenate them with the visual
features which are same as those used in BUTD-QAP (.e.
), to get multi-modal features m[l, 4] = [9;||d;] and reshape
it to get m € R*I"*4_ These multi-modal features are used
to generate the output sequence (Figure 5 (c)).

MTX-QAP: Recently, transformer models pre-trained on
large-scale paired image-text data have become popular.
Even in the absence of pre-training, such architectures can
achieve competitive performance (Lu et al. 2019). In the
context of videos, ActBert (Zhu and Yang 2020) has been
proposed. We create a similar architecture to ActBert but we
replace their proposed Tangled-Transformer with a vanilla
Transformer 2. Specifically, we jointly encode the language
and visual features in a single transformer and feed the out-
put to the decoder (Figure 5 (d)).

Training: All models are trained using smoothed label
cross-entropy with teacher forcing.

4 Experiments

We briefly discuss the dataset creation process (Section 4.1),
followed by experimental setup (Section 4.2). We then sum-
marize our results (Section 4.3) and discuss key-findings.
We provide qualitative visualizations of our dataset, metrics
and trained models in the supplementary material.

The code for ActBert is not publicly available.

4.1 Dataset Creation and Statistics

We create two datasets ASRL-QA and Charades-SRL-QA
derived from ActivityNet-SRL (Sadhu, Chen, and Nevatia
2020) and Charades (Sigurdsson et al. 2016) respectively.

There are three key steps to create QA datasets from de-
scriptions: (i) assign semantic-roles to the descriptions (ii)
perform co-reference resolution so that the questions are
self-contained (iii) obtain lemmatized nouns and verbs to
perform contrastive sampling. We follow (Sadhu, Chen, and
Nevatia 2020) and use (Shi and Lin 2019) for semantic-
role labeling. For co-reference resolution, we use the co-
reference resolution model provided by allennlp library
(Gardner et al. 2017) which uses the model by (Lee et al.
2017) but replaces the GloVe (Pennington, Socher, and Man-
ning 2014) embeddings with SpanBERT embeddings (Joshi
etal. 2019) 3.

Since Charades primarily involves videos with a single
person, we discard questions involving ARGO. We limit to
using a single description per video to avoid repetitive ques-
tions. We re-use the same train split for both datasets. For
ASRL-QA, since test set of ActivityNet is not public and
Charades only has a test set but no official validation set.
Thus, we split the existing validation set by video names
and create the validation and test sets. For both validation
and test splits, we remove those questions for which no con-
trastive sample was found as it indicates data-biases.

4.2 Experimental Setup

Dataset Statistics: ASRL-QA consists of 35.7k videos and
162k queries split as training, validation and testing as 30.3k,
2.7k, 2.7k videos and 147k, 7.5k, 7.5k queries. Note that the
size of validation and test set are proportionately smaller as
we include only those queries which have a corresponding
contrastive sample, whereas no such filtering is done for the
train set (nearly 95k queries in train set have a contrastive

*https://demo.allennlp.org/coreference-resolution



ASRL-QA

Charades-SRL-QA

R-BS Cons R-B@2 R-R R-M R-C | RBS Cons R-B@2 R-R R-M R-C
Lang-QAP | 0402 0.728 0.228 0.182 0.125 0.095 | 0.406 0.719 0277 0.253 0.147 0.121
BUTD-QAP | 0413 0.716  0.237 0.203 0.147 0.105 | 0.399 0.714 0271  0.231 0.115 0.105
VOG-QAP | 0414 0.717 0239 0.204 0.142 0.108 | 0.442 0.739 0297 0.274 0.165 0.136
MTX-QAP | 0414 0.715 0.247 0206 0.149 0.113 | 0439 0.757 0294 0.267 0.157 0.139

Table 2: Comparison of our extended models for VidQAP across two datasets on our proposed Metric. Here, “R-" prefix implies it is the
final metric computed after relative scoring and contrastive scoring with threshold 0. “BS”: BertScore, “Cons”: Consistency on BertScore,
B@2: Sentence BLEU-2, R: ROUGE, M: METEOR, C: CIDEr. All reported numbers are on the test set.

R-BS Cons
ASRL-QA Charades-SRL-QA

ARGO ARGl ARG2 LOC V ARGl ARG2 LOC LangC 0.253  0.889
LangC (no SW) 0.103 0.943

Lang-QAP | 0.697 0519 0325 0322 0.145 | 0.631 0458 033  0.206
BUTD-QAP | 0.681 0.515 0372 0334 0.162 | 0.568 0.413 0316 0.299 MTxC 0.254  0.869
VOG-QAP | 0.671 0513 0366 0332 0.188 | 0.63 0467 0365 0.305 MTxC (no SW) 0.103  0.939

MTX-QAP | 0.702 0.478 0374 0344 0.17 | 0633 0455 0364 0.304

Table 3: Comparison of our extended models per SRL. All reported scores are R-BS: BertScore
computed after relative scoring and contrastive scoring with threshold 0.

pair). Charades-SRL-QA consists of 9.4k videos and 71.7k
queries split as training, validation and testing as 7.7k, 0.8k,
0.8k videos and 59.3k, 6.1k, 6.2k queries. Despite its smaller
size, the validation and test set of Charades-SRL-QA is sim-
ilar to ASRL-QA as Charades is curated with the goal of
diversifying subject, verb, object tuples. More details about
the data statistics and visualizations are in supplementary.

Evaluation Metrics: As discussed in Section 3.2, we re-
port the combined metric (i.e. metrics prefixed with “R-
””) for the commonly used generation metrics: BLEU, ME-
TEOR, ROUGE, CIDEr and BertScore. We use the evalua-
tion metrics used in COCO-Captions (Chen et al. 2015). For
BLEU, we report the sentence level BLEU-2.

Implementation Details: For ASRL-QA we use the same
segment and proposal features provided by (Zhou et al.
2019) for ActivityNet-Entities. Segment features are com-
puted at every 0.5 second of a video using Temporal Seg-
ment Networks (Wang et al. 2016). Proposal features are
computed at 10 frames uniformly sampled from the video
segment using FasterRCNN (Ren et al. 2015) trained on vi-
sual genome (Krishna et al. 2016). We use 5 proposals per
frame which is the same as G'T'5 setting proposed in (Sadhu,
Chen, and Nevatia 2020). For Charades-SRL-QA segment
features we use the S3D (Xie et al. 2018) model pre-trained
on the HowTol100M dataset (Miech et al. 2019, 2020). We
don’t use proposal features for Charades.

Our models are implemented in Pytorch (Paszke et al.
2019). For Transformers, we use the implementation pro-
vided by Fairseq (Ott et al. 2019). For both transformer en-
coders and decoders, we use 3 layers with 8 attention heads.
The decoder is trained using teacher-forcing on the answer
phrases. We use d=>512 as the hidden embedding size for
both visual features and language features.

We train our models for 10 epochs with batch size of 32

Table 4: Comparison of models
using N-way classification across
top-1k phrases. no SW: stop words
are removed on ASRL-QA

with learning rate 1e~* and use the model with highest val-
idation metric (we use R-BertScore) for testing. Complete
implementation details are provided in the supplementary.

4.3 Results and Discussions

In Table 2 we compare the performance of the proposed
VidQAP models with a language-only baseline on two
datasets ASRL-QA and Charades-SRL-QA. As mentioned
in Section 3.2 the prefix ”R-" denotes the combined metric
of relative scoring followed by contrastive scoring.

Comparing Metrics: It is evident that compared to other
metrics, R-BertScore shows a higher relative improvement.
This is because BertScore allows soft-matches by utilizing
contextual embeddings obtained from a pre-trained BERT
(Devlin et al. 2019) or Roberta (Liu et al. 2019) model.

Comparison Across Datasets: We find that performance
on both the datasets follow very similar trends for all met-
rics. Charades-SRL-QA has slightly higher scores compared
to ASRL-QA likely because it has lesser data variations
(Charades is mostly confined indoor videos). This is encour-
aging as it suggests findings on one either dataset would
transfer.

Lower Performance of BUTD on Charades-SRL-QA:
We observe that BUTD-QAP performs worse than language-
only baseline on Charades-SRL-QA but outperforms on
ASRL-QA. We hypothesize that Charades has subtle clues
in the query-expression which are picked up by the lan-
guage encoder when the whole sequence is considered but
is missed when only the pooled hidden representation of the
query is considered.

Comparison Across Models: Other than the previous
exception, we find that multi-modal models outperform
language-only baseline. However, the improvement over
language baseline is small. To understand why the perfor-



mance gap is small, in Table 3 we report R-BertScore for
every considered SRL.

We find a large disparity in performance depending on the
SRL. Most strikingly, multi-modal models perform worse
than language-only model on ARGO and V. For ARGO, the
strong performance of the Lang-QAP arises because most of
the time the agent who causes an action is a human. There-
fore answer phrases having simply “A man” or “A woman”
or “A person” leads to reasonable performance. This addi-
tionally suggests that grounding “who” is performing the
action remains a non-trivial task.

The more surprising result is the strong performance of
Lang-QAP on VvV which is consistent across both datasets
despite using contrastive sampling. There are two likely
causes. First, the distinction between verbs is not as strict as
object nouns and as a result many similar verbs are classi-
fied as a separate verb and thereby diminishing the returns of
contrastive sampling. For instance, “jumping” and “hoping”
have different lemma and thus considered distinct verbs but
R-BS would treat them as similar even if the specific action
would be classified “jumping” rather than "hoping”. Second,
the existence of other SRLs such as ARG1 confines the set
of possible verbs. For instance, if the object is “glass”, only
limited verbs such as “drink”, “hold” are probable.

On the remaining arguments namely ARG1, ARG2, and
LOC, multi-modal models show a significant improvement
over language-only baseline ranging from 1—10%. How-
ever, the performance on absolute terms remains very low.
As such, our proposed task VidQAP remains extremely chal-
lenging for current multi-modal models with a healthy gap
remaining to be filled.

Comparison with N-way Classification: We investigate
the advantages of using a decoder network to generate
phrases compared to an N-way classification over a fixed set
of phrases. For fair comparisons, we keep the entire encod-
ing network the same. We simply replace the decoding net-
work with a classifier, which we denote with the suffix “C”.
To create the fixed set of phrases, we experiment with two
settings: one including stop-words and other excluding stop-
words. In both cases, we obtain the top-1000 phrases from
the training set, and train the in the exact same manner as
their decoder counterpart. It is evident from Table 4 that N-
way classification achieves a sub-par result by a significant
margin of over 14% point. These achieve higher consistency
due to limited number of choices.

Evaluation Metric Scores: In Table 5 we record the
BertScore computation in three parts: directly computing
over the answer phrases, performing relative scoring, finally
performing contrastive scoring with different thresholds.

We observe that for V, naive computation leads to ab-
surdly high scores. This is because verbs consist of a sin-
gle word and thus the embeddings are not contextual. This
is remedied by relative scoring and is further controlled by
combining with contrastive sampling.

Further note that relative scoring operates differently
based on the SRLs. For instance, it increases the score for
ARGO and ARG1 where the answers more often paraphrased
the ground-truth questions while for ARG2 and LOC, it de-
creases the score due to incorrect matches. While contrastive

ARGO \Y% ARGl ARG2 LOC
Direct 0552 0.9268 0234 0302 0.216

% RelScore 07 0534 0332 0237 0.1
S CS@0  0.697 0519 0325 0322 0.145
& CS@0.1 069 0492 0295 028 0.132
S CS@02 068 045 0262 0212 0.106
CS@03  0.657 0423 0219 0.149 0.085
Direct  0.566 0929 0269 0321 0.258

& RelScore 0706 0488 0366 025 0.4
O  CS@) 0702 0478 0374 0344 017
X CS@O1  0.693 045 0343 0305 0145
S CS@02 0681 0413 0306 0239 0.117

CS@0.3 0.659 0376 0.27 0.17 0.08

Table 5: BertScore Metrics computed Directly on answer phrases.
Rel Score: After Relative Scoring. CS@T: Contrastive scoring with
threshold T.

ARGO v ARGl ARG2 LOC Overall

BUTD-QAP 0.706 0.506 0.388 036 0.196 0431
VOG-QAP 0.704 0516 0366 0352 0202 0.429
MTX-QAP  0.685 0.465 0378 0355 0.19 0.416

Table 6: Effect of Adding Region Proposals. All reported scores
are R-BS

scoring is aimed at reducing language-only bias and as
such should always reduce the relative score, we observe
increased score in ARG2 for both Lang-QAP and MTX-
QAP. This is caused by the max function which restricts
the lower-limit to be 0.

Effect of Region Boxes: As noted earlier, the visual fea-
tures can also include region features extracted from an ob-
ject detector like FasterRCNN (Ren et al. 2015). In Table 6
we record the effect of including regional features. In par-
ticular, we use the GT5 setting used in (Sadhu, Chen, and
Nevatia 2020) where 5 region proposals are used from 10
frames uniformly sampled from the video segment. Inter-
estingly, MTX-QAP under-performs than both BUTD-QAP
and VOG-QAP on ARGO. A possible reason is that the trans-
former is unable to effectively reason over both language
and vision over such a large range of inputs.

5 Conclusion

In this work, we introduce Video Question Answering with
Phrases (VidQAP) where we pose VidQA as a fill-in-the-
phrase task. Given a video and query expression, a model
needs to compose a sequence of words to answer. We then
propose a method to leverage semantic roles from video de-
scriptions to generate query expressions and outline a robust
evaluation protocol. This involves computing the relative
improvement of the prediction answer compared to an empty
string followed by a contrastive sampling stage which re-
duces language-only biases. We then contribute two datasets
ASRL-QA and Charades-SRL-QA to facilitate further on
VidQAP and benchmark them with three vision-language
models extended for our proposed task.



Appendix

This is the appendix for the paper “Video Question An-
swering with Phrases via Semantic Roles”. The appendix
provides details on

1. Dataset construction and Dataset statistics (Section A)

2. Implementation Details for both the Metrics as well as the
Models (Section B).

3. Visualization of Model Outputs (Section C)

A Dataset Construction

We first discuss semantic-role labeling used in natural lan-
guage processing. Then, we detail the dataset construction
process used for ASRL-QA and Charades-SRL-QA (Section
A.2) and then provide the dataset statistics (Section A.3).

A.1 Semantic Role Labeling

Semantic-Role Labels extract out high-level meanings from
a natural language description. Two widely used SRL an-
notations are PropBank (Kingsbury and Palmer 2002) and
FrameNet (Baker, Fillmore, and Lowe 1998). Here we use
SRLs which follow PropBank annotation guidelines (see
(Bonial et al. 2012) for complete guideline).

Most commonly used argument roles are

e V: the verb. All remaining roles are dependent on this
verb. While the numbered arguments differ slightly based
on the verb used, they share common themes across verbs
as listed below (see (Bonial et al. 2012) for full details).
For instance, “cut” is a Verb.

e ARGO: the agent, or the one causing the verb. For most
action verbs, this is usually a human or an animal. For in-
stance, “A person cuts a vegetable”, “A person” is ARGO.

e ARGLI1: the object, on which the action is being performed.
In “A person cuts a vegetable”, “a vegetable” is ARG1.

e ARG2: the tool being used for the verb, or someone who
benefits from the verb. For instance, in “A person is cut-
ting a vegetable with a knife”, “with a knife” denotes the
tool and is ARG2. In “A person throws a basketball to
the basket”, “to the basket” denotes the benefactor and
is ARG2.

e ARGM-LOC or simply LOC denotes the place or location
where the verb takes place. For instance, in “A person is
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cutting a vegetable on a plate”, “on a plate” is the LOC.

These SRLs form the basis of our dataset construction
process. To assign SRLs to language descriptions we use
allennlp library (Gardner et al. 2017) which provides an im-
plementation of a BERT (Devlin et al. 2019) based semantic-
role labeler (Shi and Lin 2019). The system achieves 86.49
F1 score on OntoNotes (Pradhan et al. 2013) 5.0 dataset.

A.2 Construction Process

Both ASRL-QA and Charades-SRL-QA follow the same
process with few subtle differences. For both datasets:

1. Pre-Process Data:

e Assign semantic role labels (SRLs) to video descrip-
tions using SRL labeller (Shi and Lin 2019).

e Remove stopword verbs with lemmas: “be”, “start”,
“end”, “begin”, “stop”, “lead”, “demonstrate”, “do”.

e For the original descriptions spread across multiple
video segments, combine the sentences into a doc-
ument. Use a co-reference resolution model on this
model (we use (Lee et al. 2017) with SpanBERT em-
beddings (Joshi et al. 2019) provided in allennlp library
(Gardner et al. 2017)).

e Replace the following pronouns: “they”, “he”, “she”,
“his”, “her”, “it” with the relevant noun-phrase ob-
tained from the co-reference resolution output.

2. Query-Generation:

e For each verb-role set within a description (each de-
scription can have multiple verbs), consider the role set
ARGO, ARG1l, V, ARG2, LOC for ASRL-QA and
ARG1, V, ARG2, LOC for Charades-SRL-QA.

o If there are at least 3 verb-roles for the given verb,
for each SRL replace it with a query token (with
<Q—{R}> where R is the role). This forms one query.
Repeat for all SRLs in the considered set.

e The minimum of 3 verb-roles is present to avoid am-
biguity in the query. Limiting the argument role-set
helps in generating queries less likely to have strong
language-priors (though as seen in qualitative exam-
ples, some priors are still present).

e After the queries are generated, create lemmatized
verbs, and nouns set for each query, and store the video
segment ids in a dictionary. This is similar to the pro-
cess used in (Sadhu, Chen, and Nevatia 2020), with the
difference that we additionally have query-tokens.

e For each query, use the dictionary to sample set of
video segment ids which share the same semantic role
structure, but for the query-token have a different an-
swer. These are used for matching when computing the
scores for the validation and testing set using the con-
trastive score.

3. Creating Train/Test Splits:

e Keep the training set for each dataset the same.

e For validation and testing, we split the dataset based on
the video ids (half video ids are set as validation, and
half as testing). The queries are then split based on the
video ids.

e Note that while contrastive sampling is done before val-
idation test split. So validation and test ids are used for
computing the other’s score for contrastive sampling.
This is similar to the setting used in (Sadhu, Chen,
and Nevatia 2020) as the total number of videos avail-
able for validation, and testing are insufficient for con-
trastive sampling.

A.3 Dataset Statistics

Dataset statistics can be found in Table 1. Lemma distri-
butions are visualized in Figure 1 Overall, we find slightly
skewed distribution of Argument roles across the datasets.
For instance, ARGO, ARG1 are much more frequent than
ARG2 and LOC. Also, since every SRL needs to have a verb
(V), the distribution of the videos is the same as the overall.



ASRL-QA

| Charades-SRL-QA

Train
Overall Videos 30337
Queries 147439
Query Length 8.03
Answer Length 2.2
ARGO Videos 24483
Queries 37218
Query Length 7.31
Answer Length 2.51
\ Videos 29922
Queries 52447
Query Length 9.2
Answer Length 1
ARG1 Videos 24863
Queries 36787
Query Length 7.4
Answer Length 2.8
ARG2 Videos 12048
Queries 14321
Query Length 7.49
Answer Length 3.55
LOC Videos 6025
Queries 6666
Query Length 7.57
Answer Length 3.61

Val Test | Train Val Test
2729 2739 | 7733 860 876
7414 7238 | 59329 4431 4520
6.03 6 7.11 5.6 5.62
233 233 1.83 196 1.94
1372 1419 NA
1603 1643
573 5.65
237 248
1737 1733 | 7733 802 811
2247 2187 | 27745 1824 1829
726 7.18 7.7 637 644

1 1 1 1 1
1810 1793 | 7600 808 828
2250 2179 | 21557 1857 1874

5.4 5.43 6.43 5.07 5.04
282 2383 2.31 239 239

850 805 5433 490 522
941 886 8279 651 699
545 5.36 6.94 5.13 5.13
3.69 3.62 3.11 322 3.04
340 319 1578 87 112
373 343 1748 99 118
5.17 5.35 6.93 475 5.06
3.87 3.63 3.22 3.19 3.08

Table 1: Detailed dataset statistics for both ASRL-QA and Charades-SRL-QA with respect to different argument roles. Recall
that ARGO is not present in Charades-SRL-QA, and hence the corresponding rows are kept blank.

B Implementation Details

We first report the implementation details for the metrics
(Section B.1). Then, we detail the model implementation de-
tails (Section B.2).

B.1 Metric Implementation

For Bleu (Papineni et al. 2002), Rouge (Lin 2004), Meteor
(Banerjee and Lavie 2005), and CIDEr (Vedantam, Zitnick,
and Parikh 2015) we use the implementations provided in
coco-captions repository* (Chen et al. 2015).

For BERTScore we use the official implementation

BLEU-2: computes Bleu with n-gram with n=2. We use
sentence-bleu score instead of the more commonly used cor-
pus bleu score. This is further used for contrastive sampling.

ROUGE: we use ROUGE-L which computes the longest
common sub-sequence.

METEOR: we use Meteor 1.5 version (Denkowski and
Lavie 2014).
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4github url: https://github.com/tylin/coco-caption
>github url: https:/github.com/Tiiiger/bert_score

CIDEr: we use CIDEr-D implementation which includes
idf-weighting.

BertScore: we use BertScore with hash “roberta-
large L.17_idf_version=0.3.5(hug_trans=3.0.2)-rescaled”

We show examples of computing the metrics.

B.2 Model Implementation

We report all model implementation details.

General Settings: Our code is implemented using Py-
torch (Paszke et al. 2019). For Transformer, we use the im-
plementation provided in FairSeq (Ott et al. 2019). The vo-
cabulary consists of 5k words for ASRL-QA and 3k words
for Charades-SRL-QA. The segment features are of dimen-
sion 3072 and 512 for ASRL-QA and Charades-SRL-QA
respectively obtained from TSN (Wang et al. 2016) and S3D
(Xie et al. 2018) trained on HowTo100M (Miech et al. 2019)
using the loss function presented in (Miech et al. 2020)
®. The proposal features are of dimension 1024 and only
used for ASRL-QA extracted using FasterRCNN (Ren et al.
2015) trained on Visual Genome (Krishna et al. 2016).

Shttps://github.com/antoine77340/S3D_HowTo100M
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(a) Top-5 lemmatized nouns or verbs for the considered
semantic roles in ASRL-QA

(b) Top-5 lemmatized nouns or verbs for the considered
semantic roles in Charades-SRL-QA

Figure 1: Lemma Distribution for both ASRL-QA and
Charades-SRL-QA. The number of instances across the
whole dataset are given in the parenthesis of each lemma-
tized noun or verb.

For all cases, we report the output dimension of MLP. Un-
less otherwise stated, MLP is followed by ReLLU activation.
Decoder: The decoder uses an input of 7" x 512 (where
T refers to the length of the input embedding). Note that for
Lang-QAP, T is same as sequence length of the query, for

BUTD-QAP T=1, for VOG-QAP, T is number of SRLs *
number of segment features. For MTX-QAP, T' is sequence
length of query + number of segment features. To gener-
ate output sequences, we use the usual beam-search with a
beam-size of 2, with a temperature of 1.0.

Encoder: Encoder differs based on the specific model.
All encoders are transformer based using 8 attention heads
and 3 layers unless otherwise mentioned.

Lang-QAP: The language encoder uses 3 encoding lay-
ers, with 8 attention heads each. The embedding layer uses
a dimension of 512.

BUTD-QAP: We use the same language query, with and
pre-pend a [C'LS| token. The embedding of the [C'LS| token
serves as the language embedding, and is passed through a
MLP of dimension 512. The language encoder is the same as
Lang-QAP. The segment features are passed through MLP
of dimension 512. If proposal features are used, they are
passed through a separate MLP of dimension 512. The lan-
guage embedding (also of dimension 512) is used to com-
pute attention score with the visual features, and finally ob-
tain an attended visual feature. These attended visual fea-
tures are concatenated with the language embedding along
the last axis, and then passed to the decoder.

VOG-QAP: We use the same language encoder, but
further use the SRL phrase start and end-points for the
phrase encoder. The phrase encoder uses these start and
end points to gather the language embeddings correspond-
ing to these start and end points, concatenate them (dimen-
sion 512+512=1024) and use MLP with dimension 512.
This gives an output of the phrase encoder of size number of
SRLs *s512. The phrase encoded query is then concatenated
with all the segment features and passed through a MLP. Fi-
nally a multi-modal transformer encoder is applied over the
phrase encoded input, and is passed to the language decoder.

MTX-QAP: We collate all the language tokens (passed
through embedding layer) as well as segment features
passed through MLP, to get all features of dimension 512.
A transformer based encoder is applied on these features,
and the output is passed to the decoder.

Training: We train using standard cross-entropy loss (er-
rata in main text which states smooth cross entropy). The de-
coder is trained using teacher forcing. All models are trained
for 10 epochs with batch size of 32. On a TitanX, each epoch
takes around 30 — 40 mins.

C Visualization

We visualize the model outputs on ASRL-QA in Figure 2
(a), (b), Figure 3 (a), (b) and Figure 4. For each case, we
show the considered input in the first row, and the contrastive
sample in the second row. Each row contains 5 frames uni-
formly sampled from the video segment to be representative
of the content observed by the model. For every query, we
show the ground-truth answer and the outputs from Lang-
QAP, BUTD-QAP, VOG-QAP and MTX-QAP.

Overall, we often find Lang-QAP suggesting very prob-
able answers, but as expected they are not grounded in the
video. As a result, in either of the original sample or the con-
trastive sample, it performs poorly.



Query: <Q-ARGO> play the song on the piano
Target Answer: A little girl

Lang-QAP: The man

BUTD-QAP: A young child

VOG-QAP: A woman
MTX-Q'AP: The woman

Query: <Q-ARGO> playing a song
Target Answer: A man wearing a hat
Lang-QAP: A woman

BUTD-QAP: A man

VOG-QAP: A man wearing a hat
MTX-QAP: A man

(a) Query of type ARGO

Query: A man <Q-V> a skateboard
Target Answer: holding

Lang-QAP: riding

BUTD-QAP: picks

VOG-QAP: holding

MTX-QAP: holding

Query: Men <Q-V> skateboards
Target Answer: riding
Lang-QAP: riding

BUTD-QAP: riding

VOG-QAP: riding

MTX-QAP: riding

(b) Query of type V
Figure 2: Queries of Type ARGO and V on ASRL-QA



Query: People hit <Q-ARG1>
Target Answer: a pinata
Lang-QAP: the ball
BUTD-QAP: the pinata
VOG-QAP: the pinata
MTX-QAP: the piata

Query: The people hit <Q-ARG1>
Target Answer: the ball
Lang-QAP: the ball

BUTD-QAP: the ball

VOG-QAP: the ball

MTX-QAP: the ball

(a) Query of type ARG1

Query: A man sitting <Q-ARG2>

Target Answer: behind a drum kit
Lang-QAP: on a bed

BUTD-QAP: on a drum set
VOG-QAP: behind a drum set

MTX-QAP: in front of a drum set

Query: A man sits <Q-ARG2> next to a baby

Target Answer: on a playground swing
Lang-QAP: on a bed

BUTD-QAP: on the ground

VOG-QAP: on a swing

MTX-QAP: on a swing
(b) Query of type ARG2

Figure 3: Queries of Type ARG1 and ARG2 on ASRL-QA



Query: A lady washing clothes <Q-ARGM-LOC>

Target Answer: in a bucket
Lang-QAP: in a sink
BUTD-QAP: in a bowl
VOG-QAP: in a bucket
MTX-QAP: in the water )

B

Query: People washing their clothes <Q-ARGM-LOC>

Target Answer: in a river
Lang-QAP: in a sink
BUTD-QAP: in a lake
VOG-QAP: on a river
MTX-QAP: in the water

Figure 4: Queries of Type ARGM-LOC on ASRL-QA
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