Visual Semantic Role Labeling for Video Understanding
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Figure 1: A sample video and annotation from VidSitu. The figure shows a 10-second video annotated with 5 events,
one for each 2-second interval. Each event consists of a verb (like “deflect”) and its arguments (like Arg0 (deflector) and
Argl (thing deflected)). Entities that participate in multiple events within a clip are co-referenced across all such events
(marked using the same color). Finally, we relate all events to the central event (Event 3). The video can be viewed at:
https://youtu.be/3sP7UMxhGYw?t=20 (from 20s-30s).

Abstract

We propose a new framework for understanding and rep-
resenting related salient events in a video using visual se-
mantic role labeling. We represent videos as a set of re-
lated events, wherein each event consists of a verb and mul-
tiple entities that fulfill various roles relevant to that event.
To study the challenging task of semantic role labeling in
videos or VIdSRL, we introduce the VidSitu benchmark,
a large scale video understanding data source with 27K
10-second movie clips richly annotated with a verb and
semantic-roles every 2 seconds. Entities are co-referenced
across events within a movie clip and events are connected
to each other via event-event relations. Clips in VidSitu are
drawn from a large collection of movies (~3K) and have
been chosen to be both complex (~4.2 unique verbs within

a video) as well as diverse (~200 verbs have more than
100 annotations each). We provide a comprehensive analy-
sis of the dataset in comparison to other publicly available
video understanding benchmarks, several illustrative base-
lines and evaluate a range of standard video recognition
models. Our code and dataset will be released publicly.

1. Introduction

Videos record events in our lives with both short and long
temporal horizons. These recordings frequently relate mul-
tiple events separated geographically and temporally and
capture a wide variety of situations involving human be-
ings interacting with other humans, objects and their en-
vironment. Extracting such rich and complex information
from videos can drive numerous downstream applications
such as describing videos [34, 81, 76], answering queries


https://youtu.be/3sP7UMxhGYw?t=20

about them [84, 80], retrieving visual content [49], building
knowledge graphs [47] and even teaching embodied agents
to act and interact with the real world [83].

Parsing video content is an active area of research with
much of the focus centered around tasks such as action clas-
sification [30], localization [23] and spatio-temporal detec-
tion [20]. Although parsing human actions is a critical com-
ponent of understanding videos, actions by themselves paint
an incomplete picture, missing critical pieces such as the
agent performing the action, the object being acted upon,
the tool or instrument used to perform the action, location
where the action is performed and more. Expository tasks
such as video captioning and story-telling provide a more
holistic understanding of the visual content; but akin to their
counterparts in the image domain, they lack a clear defini-
tion of the type of information being extracted making them
notoriously hard to evaluate [31, 73].

Recent work in the image domain [82, 57, 21] has at-
tempted to move beyond action classification via the task of
visual semantic role labeling - producing not just the pri-
mary activity in an image or region, but also the entities
participating in that activity via different roles. Building
upon this line of research, we propose VidSRL - the task
of recognizing spatio-temporal situations in video content.
As illustrated in Figure. 1, VidSRL involves recognizing
and temporally localizing salient events across the video,
identifying participating actors, objects, and locations in-
volved within these events, co-referencing these entities
across events over the duration of the video, and relating
how events affect each other over time. We posit that Vid-
SRL, a considerably more detailed and involved task than
action classification with more precise definitions of the ex-
tracted information than video captioning, is a step towards
obtaining a holistic understanding of complex videos.

To study VidSRL, we present VidSitu, a large video un-
derstanding dataset of over 27K videos drawn from a di-
verse set of 3K movies. Videos in VidSitu are exactly 10
seconds long and are annotated with 5 verbs, corresponding
to the most salient event taking place within the five 2 sec-
ond intervals in the video. Each verb annotation is accom-
panied with a set of roles whose values ! are annotated using
free form text. In contrast to verb annotations which are de-
rived from a fixed vocabulary, the free form role annotations
allow the use of referring expressions (e.g. boy wearing a
blue jacket) to disambiguate entities in the video. An entity
that occurs in any of the five clips within a video is consis-
tently referred to using the same expression, allowing us to
develop and evaluate models with co-referencing capabil-
ity. Finally, the dataset also contains event relation annota-

lFollowing nomenclature introduced in ImSitu[82], every verb (deflect)
has a set of roles (Arg0 deflector, Argl thing deflected) which are realized
by noun values. Here, we use “value” to refer to free-form text used de-
scribing the roles (woman with shield, boulder).

tions capturing causation (Event Y is Caused By/Reaction
To Event X) and contingency (Event X is a pre-condition
for Event Y). The key highlights of VidSitu include: (i)
Diverse Situations: VidSitu enjoys a large vocabulary of
verbs (1500 unique verbs curated from PropBank [53] with
200 verbs having at least 100 event annotations) and entities
(5600 unique nouns with 350 nouns occurring in at least 100
videos); (ii) Complex Situations: Each video is annotated
with 5 inter-related events and has an average of 4.2 unique
verbs, 6.5 unique entities and; (iii) Rich Annotations: Vid-
Situ provides structured event representations (3.8 roles per
event) with entity co-referencing and event-relation labels.

To facilitate further research on VidSRL, we provide a
comprehensive benchmark that supports partwise evalua-
tion of various capabilities required for solving VidSRL and
create baselines for each capability using state-of-art archi-
tectural components to serve as a point of reference for fu-
ture work. We also carefully choose metrics that provide
a meaningful signal of progress towards achieving compe-
tency on each capability. Finally, we perform a human-
agreement analysis that reveals a significant room for im-
provement on the VidSitu benchmark.

Our main contributions are: (i) the VidSRL task formal-
ism for understanding complex situations in videos; (ii) cu-
rating the richly annotated VidSitu dataset that consists of
diverse and complex situations for studying VidSRL; (iii)
establishing an evaluation methodology for assessing cru-
cial capabilities needed for VidSRL and establishing base-
lines for each using state-of-art components. The dataset
and code will be released publicly.

2. Related Work

Video Understanding, a fundamental goal of computer
vision, is an incredibly active area of research involving a
wide variety of tasks such as action classification [8, 15, 74],
localization [43, 42] and spatio-temporal detection [I8],
video description [76, 34], question answering [84], and ob-
ject grounding [60]. Tasks like detecting atomic actions at 1
second intervals [ 18, 78, 66] are short horizon tasks whereas
ones like summarizing 180 second long videos [90] are ex-
tremely long horizon tasks. In contrast, our proposed task of
VidSRL operates on 10 second video at 2 second intervals.
It entails producing a verb for the salient activity within
each 2 second interval as well as predicting multiple enti-
ties that fulfill various roles related to that event, and finally
relating these events across time.

In support of these tasks, the community has also pro-
posed datasets [30, 23, 20], over the past few years. While
early datasets were small datasets with several hundred or
thousand examples[64, 35], recent datasets are massive[49]
enabling researchers to train large neural models and also
employ pre-training strategies[48, 91, 39]. Section 4, Ta-
ble 3 and Figure 2 provide a comparison of our proposed



Task Required Annotations

Dataset

Action Classification Action Labels

Action Localization Action Labels, Temp. Segments
Spatio-Temporal Detection ~ Action Labels, Temp. Segments, BBoxes
Video Description Captions, Temp. Segments

Kinetics[30], ActivityNet [23], Moments in Time [50], Something-Something[19]
ActivityNet, Thumos[28], HACS [88], Tacos[58], Charades[62], COIN[6&]
AVA[20], AVA-Kinetics[38], EPIC-Kitchens [12], JHMDB[29]

ActivityNet[23], Vatex[76], YouCook[13], MSR-VTT [81] , LSMDC [59]

Video QA Q/A, Subtitle or Script (optional) MSRVTT-QA[80], VideoQA[85], ActivityNetQA[84], TVQA[36], MovieQA[69]
Text to Video Retrieval Text Query, ASR output (optional) HowTol00M[49], TVR[37], DiDeMol[24], Charades-STA[16]

Video Object Grounding Text Query, Temp. Segments, BBoxes ActivityNet-SRL[60], YouCookII[89], VidSTG [87],VID-sentence[ | |]

VidSRL Verbs, SRLs, Corefs, Event Relations, Temp. Segments ~ VidSitu

Table 1: A non-exhaustive summary of video understanding tasks, required annotations and benchmarks.

dataset to several relevant datasets in the field. Due to space
constraints, we are unable to provide a thorough description
of all the relevant work. Instead we point the reader to rel-
evant surveys on video understanding [!, 33, 86] and also
present a holistic overview of tasks and datasets in Table 1.

Visual Semantic Role Labeling has been primarily
explored in the image domain under situation recogni-
tion [82, 57], visual semantic role labeling [2 1, 40, 63] and
human-object interaction [10, 9]. Compared to images, vi-
sual semantic role labeling in videos requires not just recog-
nizing actions and arguments at a single time step but aggre-
gating information about interacting entities across frames,
co-referencing the entities participating across events.

Movies for Video Understanding: The movie domain
serves as a rich data source for spatio-temporal detection
[20], movie description [59], movie question answering
[69], story-based retrieval [3] and generating social graphs
[71] tasks. In contrast to a lot of this prior work, we focus
only on the visual activity of the various actors and objects
in the scene, i.e. no additional modalities like movie-scripts,
subtitles or audio are presented in our dataset.

3. VidSRL: The Task

State-of-the-art video analysis capabilities like video ac-
tivity recognition and object detection yield a fairly im-
poverished understanding of videos by reducing complex
events involving interactions of multiple actors, objects,
and locations to a bag of activity and object labels. While
video captioning promises rich descriptions of videos, the
open-ended task definition of captioning lends itself poorly
to a systematic representation of such events and evalua-
tion thereof. The motivation behind VidSRL is to expand
the video analysis toolbox with vision models that produce
richer yet structured representations of complex events in
videos than currently possible through video activity recog-
nition, object detection, or captioning.

Formal task definition. Given a video V, VidSRL re-
quires a model to predict a set of related salient events
{E;}%_, constituting a situation. Each event E; consists
of a verb v; chosen from a set of of verbs )V and values
(entities, location, or other details pertaining to the event
described in text) assigned to various roles relevant to the
verb. We denote the roles or arguments of a verb v as

{A}}72, and AY<—a implies that the 4" role of verb v is as-
signed the value a. In Fig. 1 for instance, event Ej consists
of verb v="deflect (block, avoid)” with Arg0 (deflector) <+
“woman with shield”. The roles for the verbs are obtained
from PropBank [53]. Finally, we denote the relationship be-
tween any two events F and E’ by [(E, E') € L where L
is an event-relations label set. We now discuss simplifying
assumptions and trade-offs in designing the task.

Timescale of Salient Events. What constitutes a salient
event in a video is often ambiguous and subjective. For
instance given the 10 sec clip in Fig. 1, one could define
fine-grained events around atomic actions such as “turn-
ing” (Event 2 third frame) or take a more holistic view of
the sequence as involving a “fight”. This ambiguity due to
lack of constraints on timescales of events makes annota-
tion and evaluation challenging. We resolve this ambiguity
by restricting the choice of salient events to one event per
fixed time-interval. Previous work on recognizing atomic
actions [20] relied upon 1 sec intervals. An appropriate
choice of time interval for annotating events is one that en-
ables rich descriptions of complex videos while avoiding
incidental atomic actions. We observed qualitatively that a
2 sec interval strikes a good balance between obtaining de-
scriptive events and the objectiveness needed for a system-
atic evaluation. Therefore, for each 10 sec clip, we annotate
5events {F;}2_;.

Describing an Event. We describe an event through a
verb and its arguments. For verbs, we follow recent work
in action recognition like ActivityNet [23] and Moments in
Time [50] that choose a verb label for each video segment
from a curated list of verbs. To allow for description of a
wide variety of events, we select a large vocabulary of 2.2 K
visual verb from PropBank [53]. Verbs in PropBank are
diverse, distinguish between homonyms using verb-senses
(e.g. “strike (hit)” vs “strike (a pose)”), and provide a set of
roles for each verb. We allow values of arguments for the
verb to be free-form text. This allows disambiguation be-
tween different entities in the scene using referring expres-
sion such as “man with trident” or “shirtless man” (Fig. 1).
Understanding of a video may require consolidating par-
tial information across multiple views or shots. In VidSRL,
while the 2 sec clip is sufficient to assign the verb, roles
may require information from the whole video since some



entities involved in the event may be occluded or lie outside
the camera-view for those 2 secs but are visible before or
after. For e.g., in Fig 1 Event 2, information about “Arg2
(hearer)” is available only in Event 3.

Co-Referencing Entities Across Events. Within a
video, an entity may be involved in more than one event,
for instance, “woman with shield” is involved in Events 1, 2,
and 5 and “man with trident” is involved in Events 2, 3, and
4. In such cases, we expect VidSRL models to understand
co-referencing i.e. a model must be able to recognize that
the entity participating across those events is the same even
though the entity may be playing different roles in those
events. Ideally, evaluating coreferencing capability requires
grounding entities in the video (e.g. using bounding boxes).
Since grounding entities in videos is an expensive process,
we currently require the phrases referring to the same entity
across multiple events within each 10 sec clip to match ex-
actly for coreference assessment. See supp. for details on
how coreference is enforced in our annotation pipeline.

Event Relations. Understanding a video requires not
only recognizing individual events but also how events af-
fect one another. Since event relations in videos is not yet
well explored, we propose a taxonomy of event relations as
a first step — inspired by prior work on a schema for event
relations in natural language [25] that includes “Causation”
and “Contingency”. In particular, if Event B follows (occurs
after) Event A, we have the following relations: (i) Event B
is caused by Event A (Event B is a direct result of Event
B); (ii) Event B is enabled by Event A (Event A does not
cause Event B, but Event B would not occur in the absence
of Event A); (iii) Event B is a reaction to Event A (Event B
is a response to Event A); and (iv) Event B is unrelated to
Event A (examples are provided in supplementary).

4. VidSitu Dataset

To study VidSRL, we introduce the VidSitu dataset that
offers videos with diverse and complex situations (a col-
lection of related events) and rich annotations with verbs,
semantic roles, entity co-references, and event relations.
Since annotating videos with such rich annotations is ex-
pensive, several crucial dataset curation decisions were
made to enhance the efficiency and effectiveness of the an-
notation process, which we describe below.

4.1. Dataset Curation

Video Source Selection. It is crucial to choose a video
source that allows sampling diverse and complex situations.
Instructional domain video sets [49, 68, 58, 89] typically
contain a single agent in a constrained setting (e.g. cook-
ing), and open-domain video sets [30, 23] while more di-
verse often focus on a single action (the class-label). Videos
from movies are well suited for VidSRL since they are nat-

urally diverse (wide-range of movie genres) and they of-
ten involve multiple interacting entities. Also, scenarios in
movies typically play out over multiple shots which makes
movies a challenging testbed for long-range video under-
standing. We use videos from Condensed-Movies [3] which
collates videos from MovieClips- a licensed YouTube chan-
nel containing engaging movie scenes.

Video Selection. Within the roughly 1000 hours of
MovieClips videos, we select 30K diverse and interesting
10sec videos to annotate while avoiding visually uneventful
segments common in movies such as actors merely engaged
in dialogue. This selection is performed using a combina-
tion of human detection, object detection and atomic action
prediction followed by a sampling of no more than 3 videos
per movieclip after discarding inappropriate content.

Curating Verb Senses. We begin with the entire Prop-
Bank [53] vocabulary of ~6k verb-senses. We keep all
3.7K verbs with a single sense and of the remaining verbs-
senses, we discard ones that are too fine-grained (for in-
stance the verb “go” has 23 verb senses) or non visual (e.g.
“run” in the sense of running a business). To reduce this
set down to ones useful for describing movies, we discard
verbs that do not appear in the MPII-Movie Description
(MP2D) dataset [59] (verbs extracted using a semantic-role
parser [61]). This results in a final set of 2154 verb-senses.

Curating Argument Roles. We wish to establish a set
of argument roles for each verb-sense. We initialize the ar-
gument list for each verb-sense using Arg0, Argl, Arg2 ar-
guments provided by PropBank and then expand this using
frequently used (automatically extracted) arguments present
in descriptions provided by the MP2D dataset.

Annotations. Annotations for the verbs, roles and re-
lations are obtained via Amazon Mechanical Turk (AMT).
The annotation interface enables efficient annotations while
encouraging rich descriptions of entities and enabling a
reuse of entities through the video (to preserve coreferenc-
ing). Details on annotation interface, quality control, and
reward are provided in supplementary material.

Dataset splits. VidSitu is split into train, validation and
test sets via a 80 : 10 : 10 split, ensuring that videos from
the same movie end up in exactly one of those sets. Table 2
summarizes these statistics of these splits.

Multiple Annotations for Evaluation Sets. Via con-
trolled trials (see Sec 6.1) we measured the annotation dis-
agreement rate for the train set. Based on this data, we de-
termined the number of annotations required for the valida-
tion and test sets to ensure that the metrics accurately re-
flected the performance of models. We obtain multiple an-
notations for all videos in our validation and test sets using
a 2-stage annotation process. In the first stage, we collect
10 verbs for each 2 second clip (1 verb per worker). In the
second stage, we get role labels for the verb with the highest
agreement from 3 different workers.



‘ Train Val Test ‘ Total
# Movies 2431 294 301 3026
# Videos 23626 1804 1985 27415
# Clips 118130 9020 9925 137075
# Verbs Ann / Clip 1 10 10
# Verb Ann 118130 90200 99250 | 307580
# Unique Verb Tuples 23196 1801 1929 26926
# Values Ann / Role 1 3 3
# Role Ann 118130 27060 29775 174965

Table 2: Statistics on splits of VidSitu. Note that VidSitu
contains multiple verb and role annotations for val and test
sets for accurate evaluation.

4.2. Dataset Analysis and Statistics

We present an extensive analysis of VidSitu focusing
on three key elements: (i) diversity of events represented
in the dataset; (ii) complexity of the situations; and (iii)
richness of annotations. We provide comparisons to four
prominent video datasets containing text descriptions —
MSR-VTT [81], MPII-Movie Description [59], ActivityNet
Captions [34], and Vatex-en [76] (the subset of descrip-
tions in English). Table 3 summarizes basic statistics from
all datasets. For consistency, we use one description per
video segment whenever multiple annotations are available,
as is the case for Vatex-en, MSR-VTT, validation set of
ActivityNet-Captions and both validation and test sets of
VidSitu. For datasets without explicit verb or semantic role
labels, we extract these using a semantic role parser [61].

Diversity of Events. To assess the diversity of events
represented in the dataset, we consider cumulative distribu-
tions of verbs” and nouns (see Fig. 2-a,b). For any point
n on the horizontal axis, the curves show the number of
verbs or nouns with at least n annotations. VidSitu not only
offers greater diversity in verbs and nouns as compared to
other datasets but also a large number of verbs and nouns
occur sufficiently frequently to enable learning useful rep-
resentations. For instance, 224 verbs and 336 nouns have at
least 100 annotations. In general, since movies inherently
intend to engage viewers, movie datasets such as MPII and
VidSitu are more diverse than open-domain datasets like
ActivityNet-Captions and VATEX-en.

Complexity of Situations. We refer to a situation as
complex if it consists of inter-related events with multiple
entities fulfilling different roles across those events. To
evaluate complexity, Figs. 2-c,d compare the number of
unique verbs and entities per video across datasets. Approx-
imately, 80% of videos in VidSitu have at least 4 unique
verbs and 70% have 6 or more unique entities, in compari-
son to 20% and 30% respectively for VATEX-en. Further,
Fig. 2-e shows that 90% of events in VidSitu have at least
4 semantic roles in comparison to only 55% in VATEX-en.

2 As a fair comparison to datasets which do not have senses associated
with verbs, we collapse verb senses into a single unit for this analysis.

Thus, situations in VidSitu are considerably more complex
that existing datasets.

Richness of Annotations. While existing video de-
scription datasets only have unstructured text descriptions,
VidSitu is annotated with rich structured representations
of events that includes verbs, semantic role labels, entity
coreferences, and event relations. Such rich annotations not
only allow for more thorough evaluation of video analysis
techniques but also enable researchers to study relatively
unexplored problems in video understanding such as en-
tity coreference and relational understanding of events in
videos. Fig. 2-f shows the fraction of entity coreference
chains of various lengths.

5. Baselines

For a given video, VidSRL requires predicting verbs and
semantic roles for each event as well as event relations. We
provide powerful baselines to serve as a point of comparison
these crucial capabilities. These models leverage architec-
tures from state-of-the-art video recognition models.

Verb Prediction. Given a 2 sec clip, we require a model
to predict the verb corresponding to the most salient event in
the clip. As baselines, we provide state-of-art action recog-
nition models such as I3D [8] and SlowFast [15] networks
(Step 1 in Fig. 3). We consider variants of I3D both with and
without Non-Local blocks [75] and for SlowFast networks,
we consider variants with and without the Fast channel. For
each architecture, we train a model from scratch as well as
a model finetuned after pretraining on Kinetics [30]. All
models are trained with a cross-entropy loss over the set of
action labels. For subsequent stages, these verb classifica-
tion models are frozen and used as feature extractors.

Argument Prediction Given Verbs: Given a 10 sec
video and a verb for each of the 5 events, a model is re-
quired to infer entities and their roles involved in each event.
To this end, we adapt seq-to-seq models [67] that consist of
an encoder and a decoder (Step 2(a,b) in Fig. 3). Specif-
ically, independent event features are fed through a trans-
former [70] encoder (TxEnc) to get contextualized event
representations. Then for each event, the corresponding
encoded representation and the verb are passed to a trans-
former decoder (TxDec) to generate the sequence of argu-
ments and roles for that event. As an example, for Event
1 in Fig 1, we expect to generate the following sequence:
[Arg0] woman with shield [Arg1] boulder [Scene] city park

The generated sequence is post-processed to obtain the
argument role structure similar to those of the annotations
Figure 1. We also provide language only baselines using
our TxDec architecture as well as a GPT2 decoder.

Event Relation Prediction: A model must infer how the
various events within a video are related given the verb and
arguments. For a pair of ordered events (E;, ;) with ¢ < j,
with corresponding verbs and semantic roles, we construct



Dataset Domain SRLs, Coref EvRel Videos Clips Descr. Descr./Clip (Train) Avg. Clip Len. (s) Uniq Vbs/Vid Uniq Ents/Vid  Avg. Roles/Event
MSR-VTT open Implicit X 7k 10k 200k 20 14.83 1.88 2.80 1.56
MPII-MD movie Implicit X 94 68k 68.3 1 3.90 1.87 2.99 224
ActyNet-Cap open Implicit X 20k 100k 100k 1 36.20 2.30 3.75 2.37
Vatex-en open Implicit X 413k 413k 413k 10 10.00 2.69 4.04 1.96
VidSitu movie Explicit v 27.4k 137k 137k 1 10.00 4.21 6.58 3.83

Table 3: Dataset statistics across video description datasets. We highlight key differences from previous datasets such as
explicit SRL, co-reference, and event-relation annotations, and greater diversity and density of verbs, entities, and semantic
roles. For a fair comparison, for all datasets we use a single description per video segment when more than one are available.
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Figure 2: Data analysis. An analysis of VidSitu in comparison to other large scale relevant video datasets. We focus on the
diversity of actions and entities in the dataset (a and b), the complexity of the situations measured in terms of the number of
unique verbs and entities per video (c and d) and the richness of annotations (e and f).

a multimodal representation of each event denoted by m;
and m; (Step 3 in Fig. 3). Each of these representations
is a concatenation of visual representation from TxEnc and
a language representation of the sequence of verbs, argu-
ments, and roles obtained from a pretrained RoOBERTa [45]-
base language model. m; and m; are concatenated and fed
through a classifier to predict the event relation.

6. Experiments

VidSitu allows us to evaluate performance in 3 stages: (i)
verb prediction; (ii) prediction of semantic roles with coref-
erencing given the video and verbs for each event; and (iii)
event relations prediction given the video and verbs and se-
mantic roles for a pair of events.

6.1. Evaluation Metrics

In VidSRL, multiple outputs are plausible for the same
input video. This is because of inherent ambiguity in the

choice of verb used to describe the event (e.g. the same
event may be described by “fight”, “punch” or “hit”), and
the referring expression used to refer to entities in the video
(e.g. “boy with black hair” or “boy in the red shirt”). We
confirm this ambiguity through a human-agreement anal-
ysis on a subset of 100 videos (500 events) with 25 verb
annotations and 5 role annotations per event. Importantly,
through careful manual inspection we confirm that a major-
ity of differences in annotation for the same video across
AMT workers are due to this inherent ambiguity and not
due to a lack of annotation quality.

Verb Prediction. The ambiguity in verbs associated
with events suggests that commonly used metrics such as
Accuracy, Precision, and F1 are ill suited for the verb pre-
diction task as they would penalize correct predictions that
may not be represented in the ground truth annotations.
However, recall based metrics such as Recall@k are suit-
able for this task. Since the large verb vocabulary in Vid-



X Val Test
Model Vis Enc C RL CVb C-Arg Lea  Lea-S C RL CVb C-Arg Lea  LeaS
GPT2 X X | 3276 3959 4510 3030 5020 2656 | 38.10 4160 4390 3776 5328  33.50
TxDec X X | 3428 3868 4350 2900 4022 2124 | 37.10 4000 4430 3290 4362  24.48
Vid TxDec | SlowFast X | 42.11 3866 50.19 3683 3481 2479 | 4508 4021 5190 4090 3622 2774
Vid TxEncDec | SlowFast | 4320 4049 5003 3814 4899 2952 | 4634 4180 49.69 4222 5115  32.59
Vid TxDec 3D X | 4024 3955 4607 3621 3684 2590 | 4400 41.56 5064 4122  38.18  29.26
Vid TxEncDec 3D vV | 4689 4205 5289 4238 4845 3297 | 4895 4330 5265 4616 5095  35.67
Human* | | 8478  39.53 9261  79.14 7049  69.50 | 83.87 4046 89.13 7885 7264 7093

Table 4: Semantic role prediction and co-referencing metrics. Vis. denotes the visual features used (X if not used), and
Enc. denotes if video features are contextualized. C: CIDEr, R-L: ROUGE-L, C-Vb: CIDEr scores averaged across verbs,
C-Arg: CIDEr scores averaged over arguments. Lea-S: Lea-soft. See Section 6.1 for details.

Model Kin. Val Test

Acc@] Acc@5 Rec@5 | Acc@l  Acc@5 Rec@5
13D X 28.36 62.01 4.65 29.34 64.59 4.61
I3D+NL X 28.98 65.7 433 29.6 67.13 4.24
Slow+NL X 30.49 63.99 5.27 30.77 66.53 5.08
SlowFast+NL X 31.3 66.83 5.83 31.48 69.35 5.47
13D v 31.87 62.16 15.62 29.02 58.99 15.06
I3D+NL v 31.83 62.11 15.19 32.99 62.46 15.43
Slow+NL v 40.07 71.02 17.06 31.63 62.07 17.46
SlowFast+NL v/ 40.3 70.18 20.55 42.17 71.04 2145

Table 5: Verb classification metrics. Acc@K: Event Accu-
racy considering 10 ground-truths and K model predictions.
Rec@K: Macro-Averaged Verb Recall with K predictions.
Kin. denotes whether Kinetics is used.

Verb Args Val Macro-Acc  Test Macro-Acc
Roberta v v 25.00 25.00
TxEnc v v 25.00 25.00
Vid TxEnc X X 31.98 31.71
Vid TxEnc X 4 32.22 32.03
Vid TxEnc v/ v 33.46 32.10

Table 6: Event relation classification metrics. Macro-
Averaged Accuracy on Validation and Test Sets. We evalu-
ate only on the subset of data where two annotators agree.

Situ presents a class-imbalance challenge, we use a macro-
averaged Recall@k that better reflects performance across
all verb-senses instead of focusing on dominant classes.
We now describe our macro-averaged Verb Recall@k
metric. For any event, we only consider the set of verbs
which appears at least twice within the ground-truth anno-
tations (each event in val and test sets has 10 verb annota-
tions). For event E; (where j indexes events in our evalua-
tion set), let this set of agreed-upon ground-truth be denoted
by G;. We compute recall@k for each verb-sense v; € V
(where ¢ indexes verb-senses in the vocabulary V) as

Rk _ Zj ]].(1}7; S G]) X ]].(’Ui € ij)
i S, 1 € Gy)

where 1 is an indicator function and Pf denotes the set

(D

of top-k verb predictions for £;. Macro-averaged verb re-
call@k is given by ﬁ Do RE. We report macro-average
verb recall@5 (R@5) but also report top-1 and top-5 accu-
racy (Acc@1/5) for completeness.

Semantic Role Prediction and Co-referencing. Given
a video and verb for each event, we wish to measure the
semantic role prediction performance. Through a human-
agreement analysis we discard arguments such as direction
(ADir) and manner (AMnr) which do not have a high inter-
annotator agreement and retain Arg0, Argl, Arg2, Aloc,
and AScn for evaluation. This agreement computation is
computed using the CIDEr metric by treating one of the
chosen annotations as a hypothesis and remaining annota-
tions as references for each argument. In addition to re-
porting a micro-averaged CIDEr score (C), we also com-
pute macro-averaged CIDEr where the macro-averaging is
performed across verb-senses (C-Vb) or argument-types (C-
Arg). ROUGE-L (R-L) [41] is shown for completeness.

Since VidSitu provides entity coreference links across
events and roles, we use LEA [51] a link-based co-reference
metric to measure coreferencing capability. Other metrics
(MUC [72], BCUBE [2], CEAFE [46]) can be found in the
supp. Co-referencing in our case is done via exact string
matching over the predicted set of arguments. Thus, even if
the predictions are incorrect, but just the coreference is cor-
rect, LEA would give it a higher score. To address this, we
propose a soft version of LEA termed LEA-soft (denoted
with Lea-S) which assigns weights to cluster matches using
their CIDEr score (defined in the supp.).

Event-Relation Prediction Accuracy. Event-relation
prediction is a 4-way classification problem. For the subset
of 100 videos, We found event relations conditioned on the
verbs to have 60% agreement. For evaluation, we use the
subset of event pairs for which 2 out of 3 workers agreed
on the relation. We use top-1 accuracy (Acc@1) averaged
across the classes as the metric for relation prediction.
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Figure 3: Models. The figure illustrates our baselines for
verb, semantic role, and event prediction using state-of-
the-art network components such as SlowFast [15] network
for video feature extraction, transformers [70] for encoding
events in a video and verb-conditional decoding of roles,
and RoBERTa [45] language encoder for event-relation pre-
diction.

6.2. Results

Verb Classification: We report macro-averaged Rec@5
(preferred metric; Sec. 6.1) and Acc@1/5 on both valida-
tion and test sets in Tab. 5. We observe verb prediction in
VidSitu follows similar trends as other action recognition
tasks. Specifically, SlowFast architectures outperform 13D
and Kinetics pretraining significantly and consistently im-
proves recall across all models by ~ 10 to 16 points.

Argument Prediction: We report micro and macro-
averaged version of CIDEr and ROUGE-L in Tab. 4 (see
supp. for other metrics). First, video conditioned models
significantly outperform video-blind baselines. Next, we
observe that using an encoder to contextualize events in a
video improves performance across almost all metrics. In-
terestingly, while SlowFast outperformed I3D in verb pre-
diction, the reverse is true for semantic role prediction. Fi-
nally, we observe a large gap between current methods and
human performance.

We also evaluate coreferencing ability demonstrated by
models without explicitly enforcing it during training. In
Tab. 4, we report both Lea and Lea-S (preferred; Sec. 6.1)
metrics and find that current techniques are unable to
learn coreferencing directly from data. Among all models,
only Vid TxEncDec outperformed a language only baseline
(GPT2) on both val and test sets, leaving lots of room for
improvement in future models.

Event Relation Prediction results are provided in Ta-
ble 6. Crucially, we find video-blind baselines don’t train
at all and end up predicting the most frequent class “En-
abled By” (hence it gets 0.25 for always predicting major-
ity class). This suggests there exists no exploitable biases
within the dataset and underscores the importance and chal-
lenge posed by event relations. In contrast, video encoder
models even when given just the video without any verb de-
scription outperform video-blind baselines. Adding context
in the form of verb senses and arguments yields small gains.

In summary, powerful baselines show promise on the
three sub-tasks. However, it is clear that VidSitu poses sig-
nificant new challenges and provides a huge room for im-
provement. Due to space constraints in visualizing videos,
we defer qualitative analysis to the supp material.

7. Conclusion

We introduce visual semantic role labeling in videos in
which models are required to identify salient actions, partic-
ipating entities and their roles within an event, co-reference
entities across time, and recognize how actions affect each
other. We also present the VidSitu dataset with diverse
videos, complex situations, and rich annotations.



Appendix

Errata: In Figure 1, Event 2 Arg2 should be “man with
trident” instead of “main with trident”.
Appendix provides details on:

1. A Brief Summary of Semantic Roles, and their usage
in our paper.

Details on Dataset Curation and Annotation Interface
Additional Dataset Statistics

Additional Implementation Details

Details on Lea-Soft along with Tables with All Metrics
DataSheet [17] for VidSitu

Qualitative Analysis of Data (this is attached as a video
file in the zip folder).
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A. Semantic Roles: A Brief Summary

Semantic Role Labeling attempts to abstract out at a
high-level who does what to whom [65]. It is a popular nat-
ural language task which attempts at obtaining such struc-
tured outputs from natural language descriptions. As such
there are multiple sources to obtain semantic roles such as
FrameNet [4], PropBank [53] and VerbNet [7]. Prior work
on situation recognition in images (ImSitu) [82] have cu-
rated list of verbs (situations) from FrameNet, and action
recognition dataset (Moments in Time) [50] have curated
action vocabulary from VerbNet. However, we qualitatively
found both vocabulary to be insufficient to represent ac-
tions, and thus chose PropBank which contained action-
oriented verbs. As such, PropBank has been used for video
object grounding [60] but not in the context of collecting
semantic roles from visual data.

PropBank contains a set of numbered semantic roles for
each verb ranging from Arg0 to Arg4. Each numbered argu-
ment has a specific definition for a particular verb but some
themes are similar across verbs (adapted from PropBank an-
notation guidelines [6]°). For the verb “throw”:

e Arg0: Agent — object performing the action. For e.g.
“person”

» Argl: Patient — object on which action is performed.
For e.g. “ball”

* Arg2: Instrument, Benefactive, Attribute. For e.g. “to-
wards a basket”

e Arg3: Starting Point
* Arg4: Ending Point
¢ ArgM: Modifier — location (LOC), manner(MNR), di-

rection (DIR), Purpose (PRP), Goal (GOL), Temopral
(TMP), Adverb (ADV)

3http://clear.colorado.edu/compsem/documents /
propbank_guidelines.pdf

In general, we noticed that Arg3 and Arg4 were exceed-
ingly rare for visual verbs, thus we restrict our attention to
Arg0, Argl, Arg2 for numbered arguments. For modifier ar-
guments, we found Location (LOC) to be universally valid
for all video segments. Thus, for those verbs where LOC
doesn’t apply usually, we additionally add a semantic role
“Scene” which refers to “where” the event takes place (such
as “living room”, “near a lake”). Other arguments were cho-
sen based on their appearance in MPIID dataset, and we
most commonly used Manner (which suggests “how” the
action takes place) and Direction (details in the Section B).
For rest of the paper, we use ALoc, ADir, AMnr, and AScn
to denote location, direction, manner and scene arguments
respectively.

B. Dataset Collection

In this section we describe details on dataset collection
including curation of verbs and arguments, followed by
details on annotation interface, quality control and reward
structure.

B.1. Dataset Curation

We provide more details on Dataset Curation which were
omitted from Section 4.1 of the main paper.

Video Source Selection. As suggested in the Section
4.1 we aimed at a domain with two criterion: the videos
should be by themselves cover diverse situations (“climb”
verb should not just be associated with rocks or mountains,
but also things like top of a car), and that the each video
should contain complex situation (the video shouldn’t de-
pict someone doing the same task over extended period
of time, which would lower chances of finding meaning-
ful event relations and be repetitive in verbs and arguments
over the entire video).

After a brief qualitative analysis, we found instruction
domain videos (HowTo100M [49], YouCooklII [89], COIN
[68]) to have very fine-grained actions with less diversity
and less complexity within small segments, open domain
sources (ActivityNet [23], Moments in Time [50], Kinetics
[30], HACS[86]) to be somewhat diverse but low complex-
ity within a small segment. This led us to Movie domain
which had appreciable diversity as well as complexity.

We converged on using MovieClips [3] rather than other
movie sources such as MPII [59], since MovieClips al-
ready provide one-stage of filtering to provide interesting
videos. While using the same movies as used in AVA[20]
was an option, we found that the video retention was quite
low (around 20% of the movie are removed from you-
tube), and the movie contained long contiguous segments
with low complexity. We also note some other datasets
like MovieNet [27], Movie Synopsis Dataset [79], Movie
Graphs [71] do not provide movie videos and cannot be
used for collecting annotations. One demerit of using movie
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Figure 1: Bar graph showing number of unique verbs with
respect to the rank of the video segment as computed via our
heuristic based on predicted labels from SlowFast Network
[15] trained on AVA[20].

domain is that the verb distributions are skewed towards ac-
tions like “talk”, “walk”, “stare”. Despite this we find the
videos to be reasonably complex.

Video Selection. MovieClips spans a total of 15 Hours
which is far beyond what can be reasonably annotated. To
best utilize available annotation budget, we are primarily
interested in identifying video segments depicting complex
situations with a high precision while avoiding visually un-
eventful segments common in movies such as those simply
involving actors engaged in dialogue.

To avoid such segments, we use the following heuristic:
a video with more atomic actions per person is likely to be
more eventful. So, we divide all movieclips into 10 second
videos with a stride of 5 seconds, obtain human bounding
boxes from the MaskRCNN [22] object detector trained on
the MSCOCO [44] dataset, predict atomic actions for each
detected person using the SlowFast [ 1 5] activity recognition
model trained on the AVA [20] dataset, and rank all videos
by the average number of unique atomic actions per person
in the video. In particular, we discard labels such as “talk”,
“listen”, “stand” and “sit” as these atomic actions didn’t
correlate with complexity of situations. Since “action” se-
quences like “fight scenes” are favored by our ranking mea-
sure, we use simple heuristic of removing “martial arts” ac-
tions to avoid oversampling such scenes and improve diver-
sity of situations represented in the selected videos.

To confirm the usefulness of the proposed heuristic, we
conduct an experiment where we annotate 1k videos chosen
uniformly sampled across the entire dataset (as shown in
Figure 1). Reducing number of unique verbs shows the ef-
fectiveness of our heuristic and suggests at least 80K videos
segments (which translates to 27K non-overlapping video
segments) can be richly annotated.

For final video selection, we randomly choose set of
videos from the top-K ranks, such that the newly chosen
videos don’t overlap with already chosen videos, and that
no more than 3 videos are uploaded from the same youtube
video within a particular batch.

Curating Verb Senses. To curate verb senses, we follow
a two-step process: from the initial list of ~ 6k verb senses
in PropBank [53], first we manually filter verb senses which
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share the same lemmatized verb (as previously stated “go”
has 23 verb senses) to retain only “visual” verb senses (for
instance we remove the verb sense of “run” which refers to
running a business). We keep all 3.7K verbs with a single
verb sense and of the remaining 2364 verbs-senses (shared
across 809 verbs) we retain 629 verb senses (shared across
561 verbs). Second, to further restrict the set of verbs to
those useful for describing movies, we discard verbs that
do no appear at all in the MPII-Movie Description (MP2D)
dataset [59]. To extract verbs from the descriptions we use a
semantic-role parser [01]. This results in a final set of 2154
verb-senses.

Curating Argument Roles. Once we have curated the
verb-senses from PropBank, we aim to delegate a set of
argument roles for each verb-sense which would be filled
based on the video. While PropBank provides numbered
arguments for each verb-sense there are two issues with di-
rectly using them: first, some arguments are less relevant
for visual scenes (for instance Argl (utterance) for “talk” is
not visual), second, auxiliary arguments like direction and
manner are not provided (for instance direction and man-
ner for “look” are important to describe a scene). To ad-
dress this issue, we re-use the MP2D dataset to inform us
what arguments are used with the verbs. For each verb, we
choose set of 5 most frequently used argument role-set and
use their union. We also remove roles such as TMP (usually
referring to words like “now”, “then”) since temporal con-
text is implicit in our annotation structure. We also removed
roles like ADV (adverb) which were too infrequent. Finally,
we use the following modifier roles: “Manner”, “Location”,
“Direction”, “Purpose”, “Goal”, but note that “purpose” and
“goal” were restricted to a small number of verbs and hence
not considered for evaluation.

We further added the modifier role “Scene” which de-
scribes “where” the event takes place, and only applies
to verbs which don’t have “Location”. For instance,
“stand” has the argument role “location” which refers to
“where” the person is standing and doesn’t have “Scene”,
whereas “run” doesn’t contain “location” and hence con-
tains “Scene”. In general, “Scene” refers to the “place” of
the event such as “in an alleyway” or “near a beach”.

Event Relations. We started with the set of three event
relations namely: no relation (Events A and B are unre-
lated), causality (Event B is Caused By Event A i.e. B hap-
pens directly as a result of A) and contingency based (Event
B is Enabled By Event A i.e. A doesn’t directly cause B
but B couldn’t have happened without A happening first)
on prior work in cross-document event relations [25]. How-
ever, we found adding an additional case of “Reaction To”
for causality helpful to distinguish between event relations.
For instance, in the case “X punches Y followed by “Y
falls down” would be definitely “B is Caused By A”, how-
ever for the case “X punches Y” followed by “Y crouches”
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(1) Watch the above 10 sec Video (click on Replay Button)
(2) Describe the most important thing happening in every 2-second clip using Verbs and their Arguments below
(3) Then annotate Event-Relation in the last column. Read Detailed Instructions Here

(a) Annotation Interface at the start. First step is to
watch the entire 10 second video.
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(b) Second step is to select a verb from drop-down list which
shows example usage and displays slots for arguments.
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(c) Third step, is filling in argument slots for each verb and
re-using entity names which appear in drop-down.

The order of Event Relations changes for Events
before and after Event3
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025 v en v
E] manin blue jacket EV1 Causes Ev3 Ev1 before Ev3
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(d) Final step is to choose an Event Relation for Events 1,2,4,5
with respect to Event 3

Figure 2: Illustration of our annotation interface. (a) depicts the initial screen an annotator sees. In the first step, one needs
to watch the entire 10 second video. (b) depicts the second step of choosing a verb from a drop-down which contains verb
senses obtained from PropBank. After selecting a verb, an example usage is shown along with corresponding argument roles
which need to be filled. (c) depicts filling the argument slots for each verb which can be phrases of arbitrary length. Each
filled in phrase can be re-used in a subsequent slot, to enforce co-reference of the entities. (d) shows the final step of choosing
event relations once all the arguments for all events are filled. The event relations should be classified based on causality and

contingency for Events 1,2,4,5 with respect to Event 3.

it is unclear if “B is Caused By A” since Y makes a volun-
tary decision to crouch. As a result, we call this relation “B
is a Reaction To A”.

B.2. Annotation pipeline

With videos, the list of verb-sense and their roles curated,
we are now ready to crowd-source annotations on Amazon
Mechanical Turk (AMT).

Annotation Interface. Figure 2 shows screenshots de-
picting our annotation interface. For annotating a given
10 second video, the assigned worker is instructed to first
watch the entire 10-second video (Figure 2 (a)). Then for
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every 2 second interval, the annotator selects a verb cor-
responding to the most salient event from our curated list
of verb-senses using a search-able drop-down menu. Once
the verb is chosen, slots for the corresponding roles are dis-
played along with an example usage (Figure 2 (b)). The
worker fills in the values for each role using free-form text
(typically a short phrase). When referring to an entity,
we instruct the worker to use phrases that uniquely iden-
tify the entity in the full 10 second video. Furthermore,
these phrases can be reused in filling semantic-roles in other
events within the video, which provides the co-reference in-
formation about the entities i.e. co-referenced entities are



Acc@1] Acc@5 Recall@5
10A 20A 10A 20A 10A 20A
Majority 0.20 021 066 0.75 0.03 0.02
Human 0.62 0.71 096 1.00 0.64 0.59
Table 1: 10A and 20A denote 10 and 20 annotations re-

spectively. Majority denotes choosing most frequent verbs
for the validation set.

maintained via exact-string match (Figure 2 (c)). Once all
verbs and their roles are annotated, we ask the worker to
label the relation of Events 1, 2, 4, and 5 with respect to
Event 3 (Figure 2 (d)). Note that the order of causality and
contingency is different for Events 4,5 compared to Events
1,2 respecting the temporal order.

Worker Qualification and Quality Control. To ensure
that annotators have understood the task requirements, we
put up a qualification task where a worker has to success-
fully annotate 3 videos. These annotations are manually
verified by the first author who then provides feedback on
their annotations. To filter potential workers, we restrict to
more than 95% approval rate and having done at least 500
tasks. In total we qualified around 120 annotators, with at
least 60 workers annotating more than 30 videos every batch
of 2K videos.

In addition to manual qualification, we put automated
checks one average number of unique verbs provided within
a video, and average description lengths. We further manu-
ally inspect around 3 random samples from every annotator
after every 3K — 5K videos and provide constant feedback.

Annotating Validation and Test Sets.

We ran a controlled experiments using 100 videos and
annotated 25 verbs for each event. We report the human
agreement in Table 1. To compute human agreement score
for any event, we use one human annotation (out of 25)
as a prediction and the remaining 10 or 20 annotations as
ground-truths (denoted by 10A or 20A). The final score is
the average over all possible prediction/ground-truth parti-
tions. Essentially, we find that even moving from 10 to 20
annotations, the human agreement improves from 62% to
71% which suggests even at higher number of annotations,
we receive verbs which are suggested by a single annota-
tor (and hence no agreement). This rules out metrics like
accuracy, precision, or F1 scores because they would penal-
ize predictions that may be correct but are not present in a
reasonably sized set of ground truth annotations. This anal-
ysis leads us to the metric Recall@5 which measures if the
verbs most agreed upon by humans are indeed recalled by
the model in its top-5 predictions.

Furthermore, this prompts us to collect the annotations
for validation and test set in two-stages, in the first stage
we collect 9 additional annotations for verb and then in the
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Total Caused By Reaction To Enabled By No Relation

Train Set 94016 16.94 24.05 33.76 25.25
Val Set 7216 15.06 22.8 34.67 27.47
Val Set* 5502 (76.24%) 12.4 21.25 37.15 29.21
Test Set 7940 21.73 22.95 35.05 20.28
Test Set* 6135 (77.26%) 15.14 19.43 40.83 24.6

Table 2: The distribution of Event Relations before and after
filtering by taking consensus of at least two workers i.e. we
consider only those instances where two workers agree on
the event relation when given the verb.

second-stage 3 annotations for argument roles and event re-
lations given the verb (we choose the set of verbs chosen by
the annotator with the highest agreement, followed by high-
est number of unique verbs within the video). We find this
two-stage process to be of similar cost of obtaining 5 inde-
pendent annotations but with the added advantage of being
comparable across annotations. In total we annotation 3789
videos for validation and test sets.

Reward. We set the reward for annotating one 10-
second video (for training videos) to $0.75 after estimating
the average time of completing an annotation to be around
5mins. This translates to around $9/hour. Overall, we re-
ceived generous reviews for the reward on popular turk
management website. For validation and test sets, we set
the reward to $0.2 for the first stage (collecting only verbs
from 9 annotators and $0.7 for the second-stage (collecting
argument and event relations from 3 annotators). As a re-
sult, the cost for annotating a single video in the validation
and test set turns out to be $3.9 (0.2 x 9+ 0.7 x 3) which is
around 5.2x the cost of annotating a single training video.
Total cost for the process comes around $36.7K (note: this
doesn’t account for pilot experiments, qualifications, and
discarded annotations due to human errors).

Collection Timeline. Collecting the entire training set
was done over a period of about 1.2 months, and an addi-
tional 1 month for collecting the validation and test sets.

C. Additional Dataset Statistics

In this section we report additional dataset statistics not
included in Section 4.2 due to space constraints.

In Table 2 we report the distributions of Event Relations
before and after filtering for validation and test sets. For
filtering, we use consensus of two workers i.e. at least two
workers agree on the argument relation which we use as the
ground-truth. We largely find that the consensus on Caused
By and Reaction To is low, but Enabled By and No Rela-
tions are higher.

Next, we plot the distributions for the 100 most frequent
verbs, genres and chosen movies in Figure 3. For verbs
and genres we find Zipf’s law in action. For verbs, we find
most common verbs such as “talk”, “speak”, “walk”, “look”
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Verb Sense Distribution Genre Set Distribution
speak.01 5008 [Comedy] 906 Propeller 55
talk.01 5836 [Comedy','Romance’] 805 Wolf Warrior II 49
walk 01 5193 [Comedy', 'Drama’, 'Romance’] 781 Train to Busan a6
look.01 5001 [Action, ‘Adventure’, Thiller] 720 Killers 45
stare.01 3087 [Action’, ‘Adventure’, ‘Comedy] 702 We Are Blood 4
grab.01 2580 ['Comedy', 'Drama’] 645 Raging Phoenix a4
un02 2554 [Action’, ‘Adventure’, ‘Sci-Fi] 549 Chocolate a4
wm.01 2116 [Drama’] 513 Knock Knock 43
open.01 1960 [Drama’, 'Romance’] a24 The Spy Next Door 39
enter01 1696 [Crime!, Drama’, Thriler] a0 The Protector 2 39
approach.01 1572 [Action’, ‘Adventure’, Drama] 410 Rise of the Zombies a7
stand.07 1366 Horror 369 ‘The Magnificent Seven 37
ot - ek Asvoras, Sy - Zomwe Roocaoen «
drive.01 Mz3 [Action’, ‘Thriller] 359 Remo Williams: The Adventure.... 36
o1 es [Comedy’, ‘Crime] a4 Octopussy. 3
observe 01 1154 [Crime!, Dramar, Mystery] 21 AView o a Kil 3
stand.01 1143 [Comedy', ‘Crime’, Drama’] 318 Mercenary: Absolution 3
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jump.03 1086 [Crime, ‘Drama] 257 ‘The Sanctuary 3
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hito1 1070 [Drama’, Thriller] 2 The Return of the Living Dead %
Kick 01 1069 [Comedy, ‘Fantasy’, Horror] 218 SanAndreas 3
push.01 1060 [ Action’ Sci-Fr, Thiiller] o Nightof the Living Dead 2
fight 01 1056 [ Comedy, Horror] 212 Licence to Kil 2
hoia 01 1048 [Adventure',‘Comedy’, ‘Family] 195 Highkndar:Endgeme 2
climb.01 1019 [Action’, Drama’, Thriler] 3 Jackie Chan's Project A @
throw01 967 [Horror, Mystery, Thriler] W2 Lords of Dogtown 2
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cry.02 arr [Drama’, 'Music','Romance’] 7% [— »
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1ie.03 460 Facton’, Adveniure] ki The Legend of Drunken Master %
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reply.01 415 [Fantasy', "Horror', Thriller'] 61 Black Sunday- 25
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hurt.02 379 [Action’, Drama, Fantasy] L1 Sharknado 2: The Second One 25
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Figure 3: Distribution of 100 most frequent verbs (a), genre tuples (b), and movies (c). Note that for (a), the count represents
the number of events belonging to the particular verb, whereas for (b), (c) it represents the number of video segments

belonging to a particular genre or movie.
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Figure 4: 50 Most frequent words (after removing stop-words) for Arg0, Argl, Arg2, ALoc (location), ADir (direction ) and
AMnr(Manner).

are the most frequent which tend to have more movements
than “Mystery”, “Thriller” which have less movements on

actors with often extended still-frames.
In Figure 4 we plot the top 50 most frequent words

which are also part of frequent atomic actions despite ex-
plicitly not scoring them. This is an inherent effect due to
the movie domain where dialogue is a large focus. For gen-
res we find that “Comedy”, “Drama”, “Action”, “Romance”
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within the argument (after removing stop-words). We find
“man”, “woman” are the most frequent word in all of Arg0,
Argl, Arg2 which is not surprising since the movies are
human-centric. We note the over-abundance of “man” com-
pared to “woman” is an amplification of the biases present
in the movie. Interestingly, the distribution is less skewed

for Location, Direction, and Manner

D. Implementation Details

We detail some of the implementation details for our
models. All implementations are coded in PyTorch [55].
Unless otherwise mentioned we use Adam [32] optimizer
with learning rate of 1e~4.

D.1. Verb Prediction Models

All our implementations for verb prediction models such
as I3D[&], Slow-only and SlowFast networks [15] is based
on the excellent repository SlowFast [14]. We use the
checkpoints from the repository for kinetics pre-trained
models. All models are trained with a batch size of 8 for 10
epochs, and the model with best recall@5 is chosen for test-
ing. For classification, we use a set of 1560 verbs composed
two MLP projections (first projects to half the input dimen-
sion, the second to 1560 verbs) separated with a ReL.U ac-
tivation. For inference, we choose the top-5 scoring verbs.
Training requires considerable GPU space, and on 8 TITAN
GPUs, with batch size of 8 each epoch takes around 1 hour,
with total being 10 hours.

D.2. Argument Prediction Models

We extract the features from underlying base networks
which is 2048 and 2304 for I3D and SlowFast respectively.
For transformers, we use the implementation provided in
Fairseq library [52] (* and for GPT2 (medium) and Roberta
(base) we use the implementation by HuggingFace trans-
former library [77] °. For tokenization and vocabulary, we
utilize Byte-Pair Encoding and add special argument tokens
such as [Arg0] to encode the phrases.

For both transformer encoder and decoder we use 3 lay-
ers with 8 attention heads. The decoder uses the last en-
coder layer outputs as encoder attention for subsequent de-
coding. For training, we use cross-entropy loss over the pre-
dicted sequence. For sequence generation, we use greedy-
decoding with temperature 1.0 as we didn’t find improve-
ments using beam-search or using different temperature.

For training, we used a batch size of 16 for all models
other than GPT2 for which we could only use a batch size
of 8 due to memory restrictions. Training time for GPT2
is around 10 hours over 8 GPUs (recall that GPT2 medium
has 24 transformer layers and 16 attention heads). All other

4https://github.com/pytorch/fairseq/
Shttps://qithub.com/huqqianace/transformers
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models take around 15 mins per epoch with batch size of 16
on a single TITAN GPU with total time around 3 hours for
10 epochs which we found sufficient for convergence.

For computing natural language generation metrics like
ROUGE, CIDEr we use the official MSCOCO Captions im-
plementation [44] 6. For co-reference metrics, we use the
implementation provided in coval [51]7

E. Evaluation Metrics

In this section, we provide details on LEA as well as our
proposed LEA-soft. We further report additional metrics
such BLEU [54] and METEOR [5], and coreference met-
rics. We also report per-argument scores for the baselines.

E.1. Co-Reference Metrics

We primarily use the metric LEA [51] which is a link-
based metrics. We also note there exists other metrics such
as MUC [72], BCUBE [2], CEAFE[40]. We point the
reader to a seminal paper on visualizing these metrics [56]
for a brief overview of MUC, BCUBE and CEAFE, and
[51] for comparison of other metrics with LEA.

LEA and LEA-soft As noted in the paper [51], LEA
computes an importance score and resolution score for each
entity given as

Ze,;eE imp(e;) x res(e;)
ZeieE imp(ei)

The final score is the F1-measure computed based on re-
call (entities are ground-truths) and precision (entities are
predictions). As noted earlier, LEA doesn’t consider if the
proposed entity by itself is correct and thus even incor-
rect entity predictions could lead high co-reference score
as long as the co-referencing is correct. We address this us-
ing LEA-soft which additionally weights the importance of
each entity during precision computation with the sum of
cider scores in the numerator and len of cider scores in the
denominator.

As a result, we have

Ye,crimp(ei) x res(e;)
ZeiGE Zmp(el)
Yeen(Xe, Cled)) x imp(e;) x res(e;)

(E.1)

PT’GCLEA = (EZ)

Prec - =
LEA—soft EeiEE |€L| X imp(ei)

(E.3)

where C/(e;) denotes the cider score for the i" entity. We
keep the recall computation unchanged and use the modi-
fied precision to compute the final F1-Score for LEA-soft.
Since we have multiple ground-truth reference, we compute
the Fl-score for each ground-truth reference individually
and average over the 3 ground-truths.

Shttps://github.com/tylin/coco-caption
7https://qithub.com/nsfmoosavi/coval
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‘ cider Arg0 Argl Arg2 ALoc AScn ADir AMnr

GPT2 | 039 040 039 045 043 022 037 0.15

Human | 0.70 0.73 0.74 073 090 096 040 0.15
Table 3

E.2. Evaluation of Arguments

We examine the cider scores for different arguments
over a set of 100 videos (same used for verb prediction
results). To compare semantic role values, which are free-
form text phrases, we compute CIDEr metric treating one
of the chosen annotations as a hypothesis and remaining
annotations as references for each argument. Table 3
compares CIDEr scores for all semantic roles and scores
by argument type for a GPT2 based language only baseline
that generates the sequence of roles and values given the
verb for an event. We find that human-agreement is high for
all arguments except direction (ADir) and manner (AMnr).
For both “direction” (ADir) and “manner” (AMnr), we find
that both language-only baseline and human agreements
are poor. On further inspection, we find that the argument
“manner” describes “how” the event took place is open to
subjective interpretation, and the argument “direction” has
a wide range of correct values (e.g. for “walk” directions
“forward”, “down the path”, and “through the trees”)
may all be correct. For a reliable evaluation, we evaluate
argument prediction performance only on arguments that
achieved high human-agreement i.e. Arg0, Argl, Arg2,
ALoc, and AScn, and leave the evaluation of Direction and
Manner for future work.

E.3. All Metrics

We report BLEU@1, BLUE@2, METEOR, ROUGE,
and CIDEr for both val (Table 4) and test set (Table 5). For
each metric we further report macro-averaged scores across
verbs and arguments, and report per argument scores. Note
that only CIDEr is able to take advantage of the macro-
averaged scores due to its inverse document frequency re-
weighting. Finally, we report the co-reference metrics
MUC, BCUBE, CEAFE , LEA and our proposed metric
LEA-Soft.

F. VidSitu DataSheet

The seminal work datasheets for datasets [17] outlines
a list of questions to encourage transparency, account-
ability and mitigate unwanted biases. Here, we provide
a datasheet for VidSitu closely following the guidelines
in prior work. For simplicity and readability, we paste
the questions verbatim, and omit certain questions due to
double-blind anonymity.
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F.1. Motivation

F.2.

For what purpose was the dataset created? The
main motivation to create the dataset is to bridge the re-
search gap between learning atomic actions and gener-
ating holistic captions. In particular, the dataset opens
path for the task of Visual Semantic Role Labeling in
Videos which in addition to action-recognition, em-
phasizes how various objects interact within an action,
how various objects interact over time-period across
multiple actions, co-referencing of these objects over
time, and how various actions affect each other.

Who created the dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)? We omit this question due
to anonymity reasons.

Who funded the creation of the dataset? We omit
this question due to anonymity reasons.

Composition

What do the instances that comprise the dataset
represent (e.g., documents, photos, people, coun-
tries)? Each instance consists of a 10-second video
obtained from a movie-clip available on YouTube.
These are usually human-centric and hence primar-
ily contain videos of people interacting in diverse and
complex situations.

How many instances are there in total (of each
type, if appropriate)? In total there are 27.4K in-
stances distributed across training (23.62K), valida-
tion (1.80K) and testing (1.98K)

Does the dataset contain all possible instances or is
it a sample (not necessarily random) of instances
from a larger set? This question doesn’t pertain to
our dataset.

What data does each instance consist of? Each in-
stance is a 10-second video (mp4 video) available from
YouTube.

Is there a label or target associated with each in-
stance? Each instance (10 second video) is anno-
tated at 2-second intervals with a verb describing the
event, corresponding argument roles for the verb co-
referenced across the video, and event relations across
the various verbs with respect to the middle event
(Event 3 spanning from 4-6 seconds).

Is any information missing from individual in-
stances? No, every instance has the same annotations.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social net-
work links)? We provide information about which
instances are derived from the same 2 — 3 minutes



Model GPT2 TxDec | Vid TxDec Vid TxEncDec | Vid TxDec Vid TxEncDec | Human
Vis Feats X X SlowFast SlowFast 13D 13D
B@l 40.09  43.51 42.13 41.54 42.57 44.84 43.38
B@I1-Vb 38.68  39.02 37.39 37.7 38.18 40.51 40.15
B@1-Arg | 40.06 43.1 40.83 40.97 41.71 44.1 41.32
B@I1-Arg0 | 43.47 50.6 50.04 48.36 47.08 49.62 48.71
B@I1-Argl | 31.23  30.64 32.37 34.59 31.17 34.5 41.65
B@1-Arg2 | 3244 38.02 37.3 34.38 36.66 36.72 38.54
B@I1-ALoc | 45.78 48.36 42.04 47.75 44.64 49.48 36.67
B@1-AScn | 47.37 47.85 42.41 39.75 48.98 50.19 41
B@2 26.8 30.4 29.2 27.85 29.16 30.82 29.86
B@2-Vb 2425  25.26 23.9 23.97 24.45 26.11 25.69
B@2-Arg 27 29.8 27.81 27.41 28.63 30.18 28.21
B@2-Arg0 | 29.54 36.3 35.87 33.22 32.6 34.7 33.93
B@2-Argl | 18.71 19.94 21.69 21.9 19.78 21.83 27.92
B@2-Arg2 | 2029 25.96 24.95 21.38 23.67 23.17 26.15
B@2-ALoc | 32.93 32.8 27.86 33.88 32.16 35.74 25.06
B@2-AScn | 33.56 33.99 28.66 26.67 34.94 35.45 27.99
M 16.75 15.77 16.63 17.57 17.2 17.96 21.99
M-Vb 15.85 14.81 15.28 15.86 15.29 16.49 22.66
M-Arg 1529 14.64 15.21 16.25 15.58 16.81 20.57
M-Arg0 21.22 19.9 20.74 21.45 21.51 21.58 24.86
M-Argl 15 14.07 15.28 16.35 14.9 15.57 22.53
M-Arg2 14.18 13.8 13.61 15.11 14.1 14.89 19.32
M-ALoc 13.2 12.98 12.68 13.94 12.6 15.6 16.6
M-AScn 12.85 12.46 13.73 14.38 14.8 16.39 19.54
R 39.59 38.68 38.66 40.49 39.55 42.05 39.53
R-Vb 37.2 35.87 35.11 35.72 35.24 37.27 38.89
R-Arg 3896 37.54 36.7 39.27 37.94 41.29 37.81
R-Arg0 43.88 46.1 47.31 46.83 45.97 47.49 45.28
R-Argl 3395 31.28 33.03 35.38 32.73 35.03 40.66
R-Arg2 32.38  30.19 29.67 32.92 31.37 34.07 34.94
R-ALoc 41.76  39.06 33.77 39.27 35.99 44.23 32.09
R-AScn 4282  41.05 39.75 41.95 43.66 45.61 36.08
C 3276 34.28 42.11 43.2 40.24 46.89 84.78
C-Vb 45.16 43.54 50.19 50.03 46.07 52.89 92.61
C-Arg 30.34  29.04 36.83 38.14 36.21 42.38 79.14
C-Arg0 26.88 32.2 38.46 34.39 34.93 37.69 85.71
C-Argl 36.17 37.77 41.7 45.29 39.83 45.6 85.62
C-Arg2 30.31  30.51 32.81 35.62 33.51 41.13 71.8
C-ALoc 3485 2541 34.75 36.51 36.37 43.15 71.06
C-AScn 23.47  19.32 36.45 38.91 36.44 44.35 81.54
MUC 60.9 54.07 42.69 63.96 45.89 61.44 79.32
BCUBE 75.05 67.72 67.31 72.33 67.83 73.26 85.8
CEAFE 62.89 55.62 54.33 57.61 56.79 60.46 77.07
Lea 50.2 40.22 36.84 34.81 48.45 48.99 70.49
Lea-Soft 26.56 21.24 25.9 24.79 32.97 29.52 69.5

Table 4: Semantic Role Prediction on Validation Set. B@1: Bleu-1, B@2: Bleu-2, M: METEOR, R: ROUGE-L, C: CIDEr, Metric-Vb: Macro Averaged

over Verbs, Metric-Arg: Macro Averaged over arguments, Metric-Argi: Metric computed only for the particular argument.
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Model GPT2 TxDec | Vid TxDec Vid TxEncDec | Vid TxDec Vid TxEncDec | Human
Vis Feats X X SlowFast SlowFast 13D 13D

B@l1 4278  44.79 43.2 42.31 44.77 45.74 43.62
B@I1-Vb 39.64  40.07 38.97 38.08 40.74 39.83 39.8
B@1-Arg | 42.12 43.99 41.76 41.29 43.44 44.83 41.34
B@I1-Arg0 | 47.5 52.3 51.38 50.81 50.63 51.3 49.79
B@I1-Argl | 3433  33.06 34.69 37.05 34.33 35.98 41.56
B@1-Arg2 | 3579 40.21 39.07 36.55 39.58 37.39 40.07
B@1-ALoc | 46.01 46.93 42.22 45.51 44.88 50.43 36.37
B@1-AScn | 4699 47.44 41.43 36.56 47.75 49.06 38.88
B@2 29.34 31.2 29.89 28.21 31.08 31.32 29.15
B@2-Vb 2522  26.27 25.13 23.95 26.61 26.05 23.96
B@2-Arg | 28.76  30.12 28.34 27.25 29.92 30.48 27.34
B@2-Arg0 | 3351 37.71 37.02 35.09 35.94 35.9 34.03
B@2-Argl | 21.21 21.57 23.12 23.57 22.02 22.78 26.83
B@2-Arg2 | 23.83 27.97 26.8 23.21 26.73 24.48 26.44
B@2-ALoc | 32.23  30.33 27.44 30.6 31.19 353 24.93
B@2-AScn | 33.02  33.01 27.31 23.77 33.72 33.91 24.47
M 17.85 16.34 17.03 18.03 17.89 18.29 21.93
M-Vb 1593 15.12 15.8 15.86 16.22 16.28 21.67
M-Arg 16.38  15.19 15.67 16.61 16.13 17.23 20.49
M-Arg0 222 20.26 20.88 22.03 22.3 21.75 25.26
M-Argl 16.25 14.72 16.08 16.93 15.9 15.82 22.12
M-Arg2 15.8 14.82 14.66 16.22 15.04 15.33 20.11
M-ALoc 14.19 13.2 13.16 13.71 12.69 16.67 16.73
M-AScn 1346  12.95 13.59 14.14 14.74 16.56 18.24
R 41.6 40.02 40.21 41.8 41.56 43.3 40.46
R-Vb 37.74  37.01 36.66 36.78 37.74 37.29 39.44
R-Arg 40.84  38.51 38.28 40.23 39.7 42.51 38.84
R-Arg0 46.22 47.3 48.33 48.67 48.32 48.65 46.82
R-Argl 37.35 344 36.15 38.36 37.01 37.07 41.51
R-Arg2 3527 3249 32.41 35.35 33.96 34.97 37.25
R-ALoc 42.37  37.09 34.65 37.41 35.88 45.72 33.03
R-AScn 4297 41.25 39.87 41.34 43.33 46.15 35.59
C 38.18 37.2 45.08 46.34 44.53 48.95 83.87
C-Vb 4399  44.36 51.9 49.69 50.64 52.65 89.13
C-Arg 3777 3293 40.9 42.22 41.22 46.16 78.85
C-Arg0 29 32.24 40.74 36.65 39.53 37.92 86.6
C-Argl 42.3 41.24 45.95 50.46 46.73 48.93 85.23
C-Arg2 39.06 35.01 37.76 41.23 38.83 43.78 73.26
C-ALoc 49.82  32.16 43.12 43.14 43.92 55.64 75.27
C-AScn 28.64  23.99 36.93 39.62 37.08 44.54 73.87
MUC 64.9 58.28 46.07 66.7 48.71 64.72 81.49
BCUBE 76 68.71 67.31 73.15 67.75 73.98 86.41
CEAFE 63.72 56.5 53.91 58.16 56.45 61.27 78.09
Lea 53.28 43.62 36.22 51.15 38.18 50.95 72.64
Lea-Soft 33.5 24.48 27.74 32.59 29.26 35.67 70.93

Table 5: Semantic Role Prediction on Test Set. B@1: Bleu-1, B@2: Bleu-2, M: METEOR, R: ROUGE-L, C: CIDEr, Metric-Vb: Macro Averaged over

Verbs, Metric-Arg: Macro Averaged over arguments, Metric-Argi: Metric computed only for the particular argument.
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YouTube video as well as the underlying movie (this
information is obtained from Condensed-Movies [3]
dataset). However, this information is not used for any
of the task in the dataset except for splitting the videos
in train, validation and test sets.

Are there recommended data splits (e.g., training,
development/validation, testing)? Yes, we provide
training, validation and test sets by splitting the overall
setin 80 : 10 : 10 ratio randomly based on the movie
names. We also ensure (qualitatively) that the normal-
ized distributions of verbs, and genres are same across
the splits.

Are there any errors, sources of noise, or redundan-
cies in the dataset? The main sources of errors would
be the annotations themselves, however, we have made
extended efforts from automatic to manual checks to
remove such errors and provided constant feedback.
Some redundancy may occur due to oversampling of
dialogues in movies which are described with the verb
“talk”. Some redundancy may also occur due to use of
closely related verbs such as “run” and “jog”.

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., websites,
tweets, other datasets)? Yes, the dataset provides
links to YouTube videos. Since the videos are pro-
vided by a licensed channel, we expect the videos to
have high online longevity.

Does the dataset contain data that might be con-
sidered confidential (e.g., data that is protected by
legal privilege or by doctor patient confidentiality,
data that includes the content of individuals’ non-
public communications)? No, our dataset is derived
from movies publicly available on youtube.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening, or
might otherwise cause anxiety? Some of the videos
obtained from action, crime or horror movies may be
sensitive to some viewers when viewed directly. Some
videos may also contain violence and gore, and we
suggest user discretion in viewing the videos.

Collection Process

How was the data associated with each instance ac-
quired? The data was directly observable in the form
of embedded youtube videos.

What mechanisms or procedures were used to col-
lect the data (e.g., hardware apparatus or sensor,
manual human curation, software program, soft-
ware API)? We used Amazon Mechanical Turk to
collect the data with a custom annotation interface. We
validated them by small scale user study and taking
feedbacks during worker qualification.

19

F4

o If the dataset is a sample from a larger set, what
was the sampling strategy (e.g., deterministic, prob-
abilistic with specific sampling probabilities)? We
sampled videos which had more verbs within their du-
ration.

e Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were
crowdworkers paid)? Crowd-Workers were involved
in the process. They were paid $0.75 for training
videos and $0.2 for verb annotation and $0.7 for ar-
gument and event relation for videos in validation and
test splits. On average it is around $9 — $12 per hour
above the minimum wage. On popular websites, our
pay was noted to be generous.

* Over what timeframe was the data collected? The
data was collected over 2.2 months with initial 1.2
months for training set and rest for validation and test-
ing.

* Were any ethical review processes conducted (e.g.,
by an institutional review board)? No, there was no
ethical review process.

Preprocessing/cleaning/labeling

e Was any preprocessing/cleaning/labeling of the
data done (e.g., discretization or bucketing, tok-
enization, part-of-speech tagging, SIFT feature ex-
traction, removal of instances, processing of miss-
ing values)? Only, exact string match was performed
to obtain co-referenced entities. We used spacy [26]
to compute dataset statistics such as noun-diversity but
it is not used over the collected data for down-stream
tasks.

¢ Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unan-
ticipated future uses)? In our case, raw data is same
as cleaned data.

F.5. Uses

* Has the dataset been used for any tasks already?
We have used the data to show its usefulness for
our proposed task Visual Semantic Role Labeling in
Videos

¢ Is there a repository that links to any or all papers
or systems that use the dataset? We omit this ques-
tion due to anonymity reasons.

 What (other) tasks could the dataset be used for?
We believe the dataset could be repurposed for many
down-stream video understanding tasks such as video
retrieval, video question answering, action forecasting,
long-term reasoning.



[10]

* Are there tasks for which the dataset should not be
used? The data is obtained from movies and exhibits
certain stereotypes which donot hold true in real world.
It also contains highly unlikely action sequences (such
as a “man flying”), and thus it shouldn’t be used for
real-world cases and strictly used as a video under-
standing benchmark.

F.6. Distribution

* Will the dataset be distributed to third parties out-
side of the entity (e.g., company, institution, orga-
nization) on behalf of which the dataset was cre-
ated? The dataset would be made publicly available.
We omit details due to anonymity.

* How will the dataset will be distributed (e.g., tarball
on website, API, GitHub)? It would be distributed on
a website and github.
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