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ABSTRACT: 
In vanilla Deep Reinforcement Learning algorithms like Deep Q Network (DQN) , the agent 
learns the optimal policy through its interaction with the environment. The agent observes the 
reward for various actions and thereby learns which actions provide better rewards in a 
particular state by maintaining and updating action value function. In practical applications, there 
arise a particular set of problem statements where the agent is required to “remember” a 
particular observation, and consequently choose the next set of actions. Classical DQN 
architectures are not sufficient to handle such kinds of problems motivating the use of external 
memory. In this project, we explore the architecture of maintaining an explicit memory in 
addition to the DQN. This helps the agent learn the optimal route faster which is validated by our 
experiments.  
 
EXPERIMENT’S DESIGN: 
 
The Environment : 
 Our experiment revolves around a task which motivates the use of external memory that is, we 
will show faster convergence of a network using explicit memory by creating an environment 
which requires us to explicitly remember an observation. The environment is in the form of a 
I-shaped Maze. The agent starts from the top left corner. A key is placed in the top-right corner. 
There are two keys (Red, Yellow), randomly chosen in each episode, and one key corresponds 
to a particular colored door (In our case, Red corresponds to Blue, Yellow corresponds to 
Green). The agent gets the reward on reaching the doors only if the key has been collected 
prior to it. Hence, The agent is first required to learn to collect the key and then go towards the 
corresponding door (Blue or Green). The doors are placed in the lower left and lower right 
positions of the maze. Each cell in the maze is color coded. Normal cells are white. Key cells 
are either Red or Yellow while the door cells are Green or Blue as mentioned above. With 
reference to Figure 1 below, the blue dot denotes the current position of our agent. The key in 
figure 1 is Yellow in color and so the agent is expected to go to the Green cell after collecting 
the key. We created the game environment by altering the maze-implementation in OpenAI gym
 to our requirements.  1

 

1  "[1606.01540] OpenAI Gym - arXiv." Accessed November 24, 2017. 
https://arxiv.org/abs/1606.01540. 

https://arxiv.org/abs/1606.01540


 
Fig 1. Our Environment. 

 
 
The Observation Space : 

After each action step, the environment returns the following 5 observations to the agent: 
color of cell of current state appended with color of the four surrounding cells in 
North-West-South-East format. If there is a wall in the surrounding, we return color as black. 
([White, Black, White, White, White] with reference to Fig 1.). The colors are one-hot encoded 
before sending as an observation. 
 
The Action Space : 

At any time step, the agent has 4 actions to choose from : Move one step North, Move 
one step West, Move one step South or  Move one step East. It is obvious that the step will be 
taken only if there is no immediate wall in that direction. If it tries to go in the direction which has 
an immediate wall, the agent does not move and stays in the same block. 
 
The Reward :  

For every step the agent moves, we give it a reward of -0.1/(size of maze^2) if the 
corresponding cell is WHITE. When it reaches the correct door it gets a reward of +2 and when 
it reaches the wrong door it still gets a reward of +1 but only if the agent had collected the key 
before it, as mentioned earlier. Else, a reward of -0.1/(size of maze^2) is given even if it ends up 



at a door. The motivation  is so that the agent also understands that  to complete the game ,we 
need to go towards the door.. 
 
 
EXPERIMENT DETAILS : 
 
We trained the agent using deep Q-learning using 4 different architectures for the Q-network: 

● Deep Q-network (DQN ) - 2 dense layers of size 32 and output layer of size 4 for the 4 2

actions 
● Deep recurrent Q-network (DRQN ) - A dense layer of size 32 followed by a LSTM layer 3

and then a dense output layer over the last output of LSTM layer 
● Memory Q-network (MQN) - A dense layer of size 32 for feature extraction and then 

memory layer similar to MQN  4

● Recurrent memory Q-network (RMQN) - A dense layer of size 32 for feature extraction 
and then memory layer similar to RMQN  5

 
In all the cases, observations from the past 50 frames were provided as the input to all the 
networks. In case of DQN, all observations were flattened before sending them to the network. 
For other architectures, we have retained them as a sequence. 
 
Discount factor was kept as 0.99. Exploration rate was linearly annealed from 1 to 0.1 over 
1000000 time steps. Replay memory of size 100000 was used. After at least half of the replay 
memory was filled, Q-network was trained by picking a random batch of size 32 every 4 time 
steps. RMSprop was used as the optimizer with learning rate 0.00025, momentum 0.95 and 
0.01 was added to squared gradient in the denominator. 
 
For 5x5 maze, the Q-networks were initialized randomly. For 7x7 case, the model obtained after 
training on 5x5 was used. The experiments for 5x5 maze were run for 15000 episodes while the 
experiments for 7x7 maze were run for 2000000 time steps.  
 
RESULTS and DISCUSSIONS: 
 
Figure 1 shows the smoothed score (reward at the end of the episode) for 5x5 maze; figure 2 
shows the episode duration; figure 3 shows the average of the Q-values of chosen actions in an 
episode. It can be observed from the score and episode duration part that DQN was slowest to 

2  "Playing Atari with Deep Reinforcement Learning - University of ...." Accessed November 24, 2017. 
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf. 
3  "[1507.06527] Deep Recurrent Q-Learning for Partially Observable MDPs." Accessed November 24, 
2017. https://arxiv.org/abs/1507.06527. 
4  "Control of Memory, Active Perception, and Action in Minecraft - arXiv." Accessed November 24, 2017. 
https://arxiv.org/pdf/1605.09128. 
5  "Control of Memory, Active Perception, and Action in Minecraft - arXiv." Accessed November 24, 2017. 
https://arxiv.org/pdf/1605.09128. 
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https://arxiv.org/pdf/1605.09128
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converge while the rest converged fairly quickly. Also, towards the end, the score was oscillating 
between close to 2 and 1 but more than 50% of the times, the correct door was reached.  
 

 
Fig 1: Smoothed score for 5x5 maze 

 

 
Fig 2: Episode duration for 5x5 maze 

 

 
Fig 3: Average of Q-values of chosen actions for 5x5 maze 

 
Figures 4, 5, 6 show the smoothed score, cumulative reward (sum of all rewards obtained till the 
current time step over all episodes) and the episode duration. Note that the x-axis is episode 
number for score, duration while it is the time step for the cumulative reward. Since the number 
of times steps were kept constant, the number of episodes vary between algorithms. It can be 
seen that the architectures with memory (MQN, RMQN) perform better than DQN. 
 



 
Figure 4: Smoothed score for 7x7 maze 

 

 
       Figure 5: Cumulative reward for 7x7 maze 
 

 
Figure 6: Episode duration for 7x7 maze 

 
In both 5x5 and 7x7 case, the agents first learnt to go to one of the doors (randomly) after 
collecting the key and slowly started to improve by going to the correct door. Since the amount 
of training needed was very high for the second part, agent mostly ends up learning to go to one 
of the doors and doesn’t always find the correct door. 
 
During tuning of parameters, it was observed that the agent sometimes repeatedly visits the key 
block. It could be due to the requirement of getting the key to finish the maze which makes the 
agent initially give a high weightage to it. 
 



The number of past frames given to the networks as input affected the convergence. Giving 4 
frames was not enough; at 20, only MQN could learn to reach any door in 5x5 maze; at 50, all 
algorithms were able to get to one of the doors. 
 
The experiments were first run by keeping the number of episodes constant. Since exploration 
rate was annealed at each time step, algorithms which converged quickly had a higher 
exploration rate than the ones which took longer. This made comparison with x-axis as episode 
number incorrect and hence, the later experiments were run for fixed number of time steps. This 
can be seen in figure 7 where in the 5x5, the exploration rates were different for different 
algorithms. 
 

 
Figure 7: Exploration rate vs episode number for 5x5 maze 

 
The reward given by the environment was seen to have a big impact on the convergence of 
algorithms even though, ideally, it should have found the optimal policy in all cases. Giving a 
reward of 0.5 for getting the key for the first time made the agent move continuously to key and 
never go to the door. +1 for correct door and -1 for incorrect door also made the agents get 
stuck in the maze. 
 
If the exploration rate was annealed too quickly, it led to agent learning wrong policies like 
repeatedly going to the key block or not being able to solve the maze. Slower annealing 
improved learning at the cost of higher training time. 
 
Other parameters were used directly from the original implementations of the architectures. Fine 
tuning them could possibly give an improvement. 
 
 
APPLICATIONS : 

Applications of such architectures is obviously on environments where tasks are 
performed in a sequential manner depending on the previous observations. Whenever an agent 
is required to perform tasks keeping in mind the previous observations, this is a better 
architecture than classical DQNs. Here, we kept the positions of the door and keys fixed, but we 
expect the agent to perform well even if the structure is different once it has learnt which key 
corresponds to which door. The above maze is can be thought of as a simplification of some 



games where player needs to collect a key and go through the door (like Montezuma’s Revenge 
in ATARI) and hence this architecture is expected to perform well in such games too.  
 
CONCLUSION : 
 
This project demonstrated the usefulness of explicit memory for reinforcement learning. Having 
explicit memory allowed the agent to model long term dependencies easily and selectively 
remember information from the environment which could be useful in future.  
 
Algorithms rewarding exploration have been successful in solving problems which reinforcement 
learning algorithms have previously failed to solve. In future, architectures with memory can be 
combined with such algorithms to get better results. 


