CS725 : Machine Learning Project Report

Deep Reinforcement Learning with External Memory

Varun Bhatt -140260004
Arka Sadhu -140070011
Parth Kothari -14D070019
Shray Sibal -14D070017

ABSTRACT:

In vanilla Deep Reinforcement Learning algorithms like Deep Q Network (DQN) , the agent
learns the optimal policy through its interaction with the environment. The agent observes the
reward for various actions and thereby learns which actions provide better rewards in a
particular state by maintaining and updating action value function. In practical applications, there
arise a particular set of problem statements where the agent is required to “remember” a
particular observation, and consequently choose the next set of actions. Classical DQN
architectures are not sufficient to handle such kinds of problems motivating the use of external
memory. In this project, we explore the architecture of maintaining an explicit memory in
addition to the DQN. This helps the agent learn the optimal route faster which is validated by our
experiments.

EXPERIMENT’S DESIGN:

The Environment :

Our experiment revolves around a task which motivates the use of external memory that is, we
will show faster convergence of a network using explicit memory by creating an environment
which requires us to explicitly remember an observation. The environment is in the form of a
I-shaped Maze. The agent starts from the top left corner. A key is placed in the top-right corner.
There are two keys (Red, Yellow), randomly chosen in each episode, and one key corresponds
to a particular colored door (In our case, Red corresponds to Blue, Yellow corresponds to
Green). The agent gets the reward on reaching the doors only if the key has been collected
prior to it. Hence, The agent is first required to learn to collect the key and then go towards the
corresponding door (Blue or Green). The doors are placed in the lower left and lower right
positions of the maze. Each cell in the maze is color coded. Normal cells are white. Key cells
are either Red or Yellow while the door cells are Green or Blue as mentioned above. With
reference to Figure 1 below, the blue dot denotes the current position of our agent. The key in
figure 1 is Yellow in color and so the agent is expected to go to the Green cell after collecting
the key. We created the game environment by altering the maze-implementation in OpenAl gym
' to our requirements.

1"[1606.01540] OpenAl Gym - arXiv." Accessed November 24, 2017.
https://arxiv.org/abs/1606.01540.

https://arxiv.org/abs/1606.01540

& OpenAl Gym - Maze (5 x 5)

Fig 1. Our Environment.

The Observation Space :

After each action step, the environment returns the following 5 observations to the agent:
color of cell of current state appended with color of the four surrounding cells in
North-West-South-East format. If there is a wall in the surrounding, we return color as black.
([white, Black, White, White, White] with reference to Fig 1.). The colors are one-hot encoded
before sending as an observation.

The Action Space :

At any time step, the agent has 4 actions to choose from : Move one step North, Move
one step West, Move one step South or Move one step East. It is obvious that the step will be
taken only if there is no immediate wall in that direction. If it tries to go in the direction which has
an immediate wall, the agent does not move and stays in the same block.

The Reward :

For every step the agent moves, we give it a reward of -0.1/(size of maze”2) if the
corresponding cell is WHITE. When it reaches the correct door it gets a reward of +2 and when
it reaches the wrong door it still gets a reward of +1 but only if the agent had collected the key
before it, as mentioned earlier. Else, a reward of -0.1/(size of maze”2) is given even if it ends up

at a door. The motivation is so that the agent also understands that to complete the game ,we
need to go towards the door..

EXPERIMENT DETAILS :

We trained the agent using deep Q-learning using 4 different architectures for the Q-network:

e Deep Q-network (DQN?) - 2 dense layers of size 32 and output layer of size 4 for the 4
actions

e Deep recurrent Q-network (DRQN?) - A dense layer of size 32 followed by a LSTM layer
and then a dense output layer over the last output of LSTM layer

e Memory Q-network (MQN) - A dense layer of size 32 for feature extraction and then
memory layer similar to MQN*

e Recurrent memory Q-network (RMQN) - A dense layer of size 32 for feature extraction
and then memory layer similar to RMQN?®

In all the cases, observations from the past 50 frames were provided as the input to all the
networks. In case of DQN, all observations were flattened before sending them to the network.
For other architectures, we have retained them as a sequence.

Discount factor was kept as 0.99. Exploration rate was linearly annealed from 1 to 0.1 over
1000000 time steps. Replay memory of size 100000 was used. After at least half of the replay
memory was filled, Q-network was trained by picking a random batch of size 32 every 4 time
steps. RMSprop was used as the optimizer with learning rate 0.00025, momentum 0.95 and
0.01 was added to squared gradient in the denominator.

For 5x5 maze, the Q-networks were initialized randomly. For 7x7 case, the model obtained after
training on 5x5 was used. The experiments for 5x5 maze were run for 15000 episodes while the

experiments for 7x7 maze were run for 2000000 time steps.

RESULTS and DISCUSSIONS:

Figure 1 shows the smoothed score (reward at the end of the episode) for 5x5 maze; figure 2
shows the episode duration; figure 3 shows the average of the Q-values of chosen actions in an
episode. It can be observed from the score and episode duration part that DQN was slowest to

2 "Playing Atari with Deep Reinforcement Learning - University of" Accessed November 24, 2017.
https://www.cs.toronto.edu/~vmnih/docs/dgn.pdf.

3 "[1507.06527] Deep Recurrent Q-Learning for Partially Observable MDPs." Accessed November 24,
2017. https://arxiv.org/abs/1507.06527.

4 "Control of Memory, Active Perception, and Action in Minecraft - arXiv." Accessed November 24, 2017.
https://arxiv.org/pdf/1605.09128.

5 "Control of Memory, Active Perception, and Action in Minecraft - arXiv." Accessed November 24, 2017.
https://arxiv.org/pdf/1605.09128.

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://arxiv.org/abs/1507.06527
https://arxiv.org/pdf/1605.09128
https://arxiv.org/pdf/1605.09128

converge while the rest converged fairly quickly. Also, towards the end, the score was oscillating
between close to 2 and 1 but more than 50% of the times, the correct door was reached.

O SxsdanComplex
200 () Sx5drgnComplex

3.00 5x5manComplex

sxsrmgnComplex

0.000 2.000k 4.000k 6.000k 8.000k 10.00k 12.00k 14.00k

Fig 1: Smoothed score for 5x5 maze

Episode_duration

1.40e+3 () 5x5dgnComplex

1.20e+3 (O S5x5drgnComplex

sxsmanComplex
1.00e+3
sxsrmanComplex
800
600
400
200
Basbd A, i N S

0.000 2.000k 4.000k 6.000k B8.000k 10.00k 12.00k 14.00k

Fig 2: Episode duration for 5x5 maze

Avg_max_Q

180 (O Sx5danComplex

e (O 5x5drgnComplex

5x5mgnComplex

120 S5x5rmgnComplex

1.00
0.800
0600
0400

0.200

0.000 2.000k 4.000k 6.000k 8.000k 10.00k 12.00k 14.00k

Fig 3: Average of Q-values of chosen actions for 5x5 maze

Figures 4, 5, 6 show the smoothed score, cumulative reward (sum of all rewards obtained till the
current time step over all episodes) and the episode duration. Note that the x-axis is episode
number for score, duration while it is the time step for the cumulative reward. Since the number
of times steps were kept constant, the number of episodes vary between algorithms. It can be
seen that the architectures with memory (MQN, RMQN) perform better than DQN.

200 O dan
O man
O rman

0.000 5.000k 10.00k 15.00k 20.00k 25.00k 30.00k 35.00k 40.00k 45.00k 50.00k 55.00k

Figure 4: Smoothed score for 7x7 maze

Cumulative_reward

9.0008+4

8.0008+4

7.000e+4 O/ dan
O man
O mman

6.0008+4.
5.000e+4
4.000e+4
3.0008+4
2.0008+4

1.000e+4 _ —

0.00

-1.000e+4

0.000 200.0k 400.0k 600.0k 800.0k 1.000M 1.200M 1.400M 1.600M 1.800M 2.000M

Figure 5: Cumulative reward for 7x7 maze

Episode_duration

4.50e+3
4.008+3
3.00e+3

3.00e+3

O dan
2.508+3 O man
200843 O rman

1.50e+3

1.00e+3

s N

0.00

0.000 5.000k 10.00k 15.00k 20.00k 25.00k 30.00k 35.00k 40.00k 45.00k 50.00k 55.00k

Figure 6: Episode duration for 7x7 maze

In both 5x5 and 7x7 case, the agents first learnt to go to one of the doors (randomly) after
collecting the key and slowly started to improve by going to the correct door. Since the amount
of training needed was very high for the second part, agent mostly ends up learning to go to one
of the doors and doesn’t always find the correct door.

During tuning of parameters, it was observed that the agent sometimes repeatedly visits the key
block. It could be due to the requirement of getting the key to finish the maze which makes the
agent initially give a high weightage to it.

The number of past frames given to the networks as input affected the convergence. Giving 4
frames was not enough; at 20, only MQN could learn to reach any door in 5x5 maze; at 50, all
algorithms were able to get to one of the doors.

The experiments were first run by keeping the number of episodes constant. Since exploration
rate was annealed at each time step, algorithms which converged quickly had a higher
exploration rate than the ones which took longer. This made comparison with x-axis as episode
number incorrect and hence, the later experiments were run for fixed number of time steps. This
can be seen in figure 7 where in the 5x5, the exploration rates were different for different
algorithms.

Epsilon

120

1.00

0.600
0.400

0.200

0.000 2.000k 4.000k 6.000k 8000k 10.00k 12.00k 14.00k

Figure 7: Exploration rate vs episode number for 5x5 maze

The reward given by the environment was seen to have a big impact on the convergence of
algorithms even though, ideally, it should have found the optimal policy in all cases. Giving a
reward of 0.5 for getting the key for the first time made the agent move continuously to key and
never go to the door. +1 for correct door and -1 for incorrect door also made the agents get
stuck in the maze.

If the exploration rate was annealed too quickly, it led to agent learning wrong policies like
repeatedly going to the key block or not being able to solve the maze. Slower annealing
improved learning at the cost of higher training time.

Other parameters were used directly from the original implementations of the architectures. Fine
tuning them could possibly give an improvement.

APPLICATIONS :

Applications of such architectures is obviously on environments where tasks are
performed in a sequential manner depending on the previous observations. Whenever an agent
is required to perform tasks keeping in mind the previous observations, this is a better
architecture than classical DQNs. Here, we kept the positions of the door and keys fixed, but we
expect the agent to perform well even if the structure is different once it has learnt which key
corresponds to which door. The above maze is can be thought of as a simplification of some

games where player needs to collect a key and go through the door (like Montezuma’s Revenge
in ATARI) and hence this architecture is expected to perform well in such games too.

CONCLUSION :

This project demonstrated the usefulness of explicit memory for reinforcement learning. Having
explicit memory allowed the agent to model long term dependencies easily and selectively
remember information from the environment which could be useful in future.

Algorithms rewarding exploration have been successful in solving problems which reinforcement
learning algorithms have previously failed to solve. In future, architectures with memory can be
combined with such algorithms to get better results.

